Download
This is a set of 9 randomly-generated problems, each with 100 cars. The
utilisation of the option stations is high, so that these are relatively
difficult problems to solve. At least two have no solution (10/93 and 16/81).
Some of the problems were used by Regin and Puget in their CP97 paper.
#------------
# Problem 4/72 (Regin & Puget #1)
# Satisfiable
#------------
100 5 22
0 6 1 0 0 1 0
1 10 1 1 1 0 0
2 2 1 1 0 0 1
3 2 0 1 1 0 0
4 8 0 0 0 1 0
5 15 0 1 0 0 0
6 1 0 1 1 1 0
7 5 0 0 1 1 0
8 2 1 0 1 1 0
9 3 0 0 1 0 0
10 2 1 0 1 0 0
11 1 1 1 1 0 1
12 8 0 1 0 1 0
13 3 1 0 0 1 1
14 10 1 0 0 0 0
15 4 0 1 0 0 1
16 4 0 0 0 0 1
17 2 1 0 0 0 1
18 4 1 1 0 0 0
19 6 1 1 0 1 0
20 1 1 0 1 0 1
21 1 1 1 1 1 1
#----------------
# Problem 6/76 (Regin & Puget #2)
# No solution
#----------------
100 5 22
0 13 1 0 0 0 0
1 8 0 0 0 1 0
2 7 0 1 0 0 0
3 1 1 0 0 1 0
4 12 0 0 1 0 0
5 5 0 1 0 1 0
6 5 0 0 1 1 0
7 6 0 1 1 0 0
8 3 1 0 0 0 1
9 12 1 1 0 0 0
10 8 1 1 0 1 0
11 2 1 0 0 1 1
12 2 1 1 1 0 0
13 1 0 1 0 1 1
14 4 1 0 1 0 0
15 4 0 1 0 0 1
16 1 1 1 0 1 1
17 2 1 0 1 1 0
18 1 0 0 0 0 1
19 1 1 1 1 1 0
20 1 1 1 0 0 1
21 1 0 1 1 1 0
#----------------
# Problem 10/93 (Regin & Puget #3)
# No solution
#----------------
100 5 25
0 7 1 0 0 1 0
1 11 1 1 0 0 0
2 1 0 1 1 1 1
3 3 1 0 1 0 0
4 15 0 1 0 0 0
5 2 1 0 1 1 0
6 8 0 1 0 1 0
7 5 0 0 1 0 0
8 3 0 0 0 1 0
9 4 0 1 1 1 0
10 5 1 0 0 0 0
11 2 1 1 1 0 1
12 6 0 1 1 0 0
13 2 0 0 1 0 1
14 2 0 1 0 0 1
15 4 1 1 1 1 0
16 3 1 0 0 0 1
17 5 1 1 0 1 0
18 2 1 1 1 0 0
19 4 1 1 0 0 1
20 1 1 0 0 1 1
21 1 1 1 0 1 1
22 1 0 1 0 1 1
23 1 0 1 1 0 1
24 2 0 0 0 0 1
#---------------
# Problem 16/81
# No solution
#--------------
100 5 26
0 10 1 0 0 0 0
1 2 0 0 0 0 1
2 8 0 1 0 1 0
3 8 0 0 0 1 0
4 6 0 1 1 0 0
5 11 0 1 0 0 0
6 3 0 0 1 0 0
7 2 0 0 1 1 0
8 7 1 1 0 0 0
9 2 1 0 0 1 1
10 4 1 0 1 0 0
11 7 1 0 0 1 0
12 1 1 1 1 0 1
13 3 0 1 1 1 0
14 4 0 1 0 0 1
15 5 1 1 1 0 0
16 2 1 1 0 0 1
17 1 1 0 1 1 1
18 2 1 0 1 1 0
19 3 1 0 0 0 1
20 2 0 1 1 0 1
21 1 0 1 0 1 1
22 3 1 1 0 1 0
23 1 0 0 1 1 1
24 1 1 1 1 1 1
25 1 1 1 1 1 0
#--------------
# Problem 19/71 (Regin & Puget #4)
# Shown by Ian Gent to have no solution
#--------------
100 5 23
0 2 0 0 0 1 1
1 2 0 0 1 0 1
2 5 0 1 1 1 0
3 4 0 0 0 1 0
4 4 0 1 0 1 0
5 1 1 1 0 0 1
6 3 1 1 1 0 1
7 4 0 0 1 0 0
8 19 0 1 0 0 0
9 7 1 1 0 1 0
10 10 1 0 0 0 0
11 1 0 0 1 1 0
12 5 1 1 1 1 0
13 2 1 0 1 1 0
14 6 1 1 0 0 0
15 4 1 1 1 0 0
16 8 1 0 0 1 0
17 1 1 0 0 0 1
18 4 0 1 1 0 0
19 2 0 0 0 0 1
20 4 0 1 0 0 1
21 1 1 1 0 1 1
22 1 0 1 1 0 1
#---------------
# Problem 21/90
#---------------
100 5 23
0 14 0 1 0 0 0
1 11 1 0 0 0 0
2 2 0 1 1 1 0
3 1 0 1 1 0 1
4 1 1 0 0 1 1
5 3 1 0 1 0 0
6 5 0 0 0 1 0
7 4 1 0 0 1 0
8 1 1 1 1 1 1
9 5 0 0 1 0 0
10 3 1 1 0 1 0
11 2 1 1 0 1 1
12 2 1 1 1 0 1
13 7 0 1 1 0 0
14 9 0 1 0 1 0
15 14 1 1 0 0 0
16 3 0 1 0 1 1
17 2 0 0 1 0 1
18 6 1 1 1 0 0
19 2 1 1 1 1 0
20 1 0 1 0 0 1
21 1 0 0 0 0 1
22 1 0 0 0 1 1
#--------------
# Problem 36/92
#--------------
100 5 22
0 20 0 1 0 0 0
1 7 1 1 1 0 0
2 3 0 0 1 1 0
3 9 0 0 0 1 0
4 3 0 0 0 0 1
5 1 0 1 1 1 1
6 7 1 0 0 0 0
7 3 0 1 0 0 1
8 3 1 1 1 1 0
9 1 1 0 0 1 1
10 2 1 1 0 0 1
11 5 0 1 1 1 0
12 9 1 1 0 0 0
13 3 0 1 0 1 0
14 1 1 0 1 1 1
15 6 1 1 0 1 0
16 4 1 0 0 1 0
17 7 0 1 1 0 0
18 1 1 1 0 1 1
19 2 1 0 0 0 1
20 2 1 0 1 1 0
21 1 0 0 0 1 1
#--------------
# Problem 41/66
# Satisfiable
#--------------
100 5 19
0 7 1 0 0 0 0
1 9 0 1 1 0 0
2 4 0 0 0 1 0
3 2 0 1 0 1 1
4 6 0 0 1 0 0
5 18 0 1 0 0 0
6 6 0 1 0 0 1
7 6 0 0 0 0 1
8 1 1 1 0 1 1
9 10 1 1 0 0 0
10 2 1 0 0 0 1
11 11 0 1 0 1 0
12 5 0 0 1 1 0
13 1 0 1 1 1 0
14 1 0 1 1 0 1
15 3 1 0 1 0 0
16 3 1 1 1 0 0
17 3 1 1 0 1 0
18 2 1 1 1 1 0
#--------------
#Problem 26/82
#-------------
100 5 24
0 2 1 1 0 1 0
1 13 0 1 0 0 0
2 10 0 1 0 1 0
3 14 1 1 0 0 0
4 5 0 0 0 1 0
5 2 0 1 0 1 1
6 2 0 1 1 0 0
7 8 1 0 0 1 0
8 5 0 0 1 1 0
9 3 1 1 1 0 0
10 9 1 0 0 0 0
11 6 1 1 0 0 1
12 2 1 1 1 1 0
13 2 0 0 0 0 1
14 1 1 1 1 0 1
15 2 0 1 1 1 0
16 2 1 0 1 0 0
17 1 1 0 0 0 1
18 1 1 0 1 1 0
19 6 0 0 1 0 0
20 1 1 1 1 1 1
21 1 0 0 1 1 1
22 1 0 1 1 0 1
23 1 0 0 1 0 1