This is a set of 9 randomly-generated problems, each with 100 cars. The utilisation of the option stations is high, so that these are relatively difficult problems to solve. At least two have no solution (10/93 and 16/81). Some of the problems were used by Regin and Puget in their CP97 paper. #------------ # Problem 4/72 (Regin & Puget #1) # Satisfiable #------------ 100 5 22 0 6 1 0 0 1 0 1 10 1 1 1 0 0 2 2 1 1 0 0 1 3 2 0 1 1 0 0 4 8 0 0 0 1 0 5 15 0 1 0 0 0 6 1 0 1 1 1 0 7 5 0 0 1 1 0 8 2 1 0 1 1 0 9 3 0 0 1 0 0 10 2 1 0 1 0 0 11 1 1 1 1 0 1 12 8 0 1 0 1 0 13 3 1 0 0 1 1 14 10 1 0 0 0 0 15 4 0 1 0 0 1 16 4 0 0 0 0 1 17 2 1 0 0 0 1 18 4 1 1 0 0 0 19 6 1 1 0 1 0 20 1 1 0 1 0 1 21 1 1 1 1 1 1 #---------------- # Problem 6/76 (Regin & Puget #2) # No solution #---------------- 100 5 22 0 13 1 0 0 0 0 1 8 0 0 0 1 0 2 7 0 1 0 0 0 3 1 1 0 0 1 0 4 12 0 0 1 0 0 5 5 0 1 0 1 0 6 5 0 0 1 1 0 7 6 0 1 1 0 0 8 3 1 0 0 0 1 9 12 1 1 0 0 0 10 8 1 1 0 1 0 11 2 1 0 0 1 1 12 2 1 1 1 0 0 13 1 0 1 0 1 1 14 4 1 0 1 0 0 15 4 0 1 0 0 1 16 1 1 1 0 1 1 17 2 1 0 1 1 0 18 1 0 0 0 0 1 19 1 1 1 1 1 0 20 1 1 1 0 0 1 21 1 0 1 1 1 0 #---------------- # Problem 10/93 (Regin & Puget #3) # No solution #---------------- 100 5 25 0 7 1 0 0 1 0 1 11 1 1 0 0 0 2 1 0 1 1 1 1 3 3 1 0 1 0 0 4 15 0 1 0 0 0 5 2 1 0 1 1 0 6 8 0 1 0 1 0 7 5 0 0 1 0 0 8 3 0 0 0 1 0 9 4 0 1 1 1 0 10 5 1 0 0 0 0 11 2 1 1 1 0 1 12 6 0 1 1 0 0 13 2 0 0 1 0 1 14 2 0 1 0 0 1 15 4 1 1 1 1 0 16 3 1 0 0 0 1 17 5 1 1 0 1 0 18 2 1 1 1 0 0 19 4 1 1 0 0 1 20 1 1 0 0 1 1 21 1 1 1 0 1 1 22 1 0 1 0 1 1 23 1 0 1 1 0 1 24 2 0 0 0 0 1 #--------------- # Problem 16/81 # No solution #-------------- 100 5 26 0 10 1 0 0 0 0 1 2 0 0 0 0 1 2 8 0 1 0 1 0 3 8 0 0 0 1 0 4 6 0 1 1 0 0 5 11 0 1 0 0 0 6 3 0 0 1 0 0 7 2 0 0 1 1 0 8 7 1 1 0 0 0 9 2 1 0 0 1 1 10 4 1 0 1 0 0 11 7 1 0 0 1 0 12 1 1 1 1 0 1 13 3 0 1 1 1 0 14 4 0 1 0 0 1 15 5 1 1 1 0 0 16 2 1 1 0 0 1 17 1 1 0 1 1 1 18 2 1 0 1 1 0 19 3 1 0 0 0 1 20 2 0 1 1 0 1 21 1 0 1 0 1 1 22 3 1 1 0 1 0 23 1 0 0 1 1 1 24 1 1 1 1 1 1 25 1 1 1 1 1 0 #-------------- # Problem 19/71 (Regin & Puget #4) # Shown by Ian Gent to have no solution #-------------- 100 5 23 0 2 0 0 0 1 1 1 2 0 0 1 0 1 2 5 0 1 1 1 0 3 4 0 0 0 1 0 4 4 0 1 0 1 0 5 1 1 1 0 0 1 6 3 1 1 1 0 1 7 4 0 0 1 0 0 8 19 0 1 0 0 0 9 7 1 1 0 1 0 10 10 1 0 0 0 0 11 1 0 0 1 1 0 12 5 1 1 1 1 0 13 2 1 0 1 1 0 14 6 1 1 0 0 0 15 4 1 1 1 0 0 16 8 1 0 0 1 0 17 1 1 0 0 0 1 18 4 0 1 1 0 0 19 2 0 0 0 0 1 20 4 0 1 0 0 1 21 1 1 1 0 1 1 22 1 0 1 1 0 1 #--------------- # Problem 21/90 #--------------- 100 5 23 0 14 0 1 0 0 0 1 11 1 0 0 0 0 2 2 0 1 1 1 0 3 1 0 1 1 0 1 4 1 1 0 0 1 1 5 3 1 0 1 0 0 6 5 0 0 0 1 0 7 4 1 0 0 1 0 8 1 1 1 1 1 1 9 5 0 0 1 0 0 10 3 1 1 0 1 0 11 2 1 1 0 1 1 12 2 1 1 1 0 1 13 7 0 1 1 0 0 14 9 0 1 0 1 0 15 14 1 1 0 0 0 16 3 0 1 0 1 1 17 2 0 0 1 0 1 18 6 1 1 1 0 0 19 2 1 1 1 1 0 20 1 0 1 0 0 1 21 1 0 0 0 0 1 22 1 0 0 0 1 1 #-------------- # Problem 36/92 #-------------- 100 5 22 0 20 0 1 0 0 0 1 7 1 1 1 0 0 2 3 0 0 1 1 0 3 9 0 0 0 1 0 4 3 0 0 0 0 1 5 1 0 1 1 1 1 6 7 1 0 0 0 0 7 3 0 1 0 0 1 8 3 1 1 1 1 0 9 1 1 0 0 1 1 10 2 1 1 0 0 1 11 5 0 1 1 1 0 12 9 1 1 0 0 0 13 3 0 1 0 1 0 14 1 1 0 1 1 1 15 6 1 1 0 1 0 16 4 1 0 0 1 0 17 7 0 1 1 0 0 18 1 1 1 0 1 1 19 2 1 0 0 0 1 20 2 1 0 1 1 0 21 1 0 0 0 1 1 #-------------- # Problem 41/66 # Satisfiable #-------------- 100 5 19 0 7 1 0 0 0 0 1 9 0 1 1 0 0 2 4 0 0 0 1 0 3 2 0 1 0 1 1 4 6 0 0 1 0 0 5 18 0 1 0 0 0 6 6 0 1 0 0 1 7 6 0 0 0 0 1 8 1 1 1 0 1 1 9 10 1 1 0 0 0 10 2 1 0 0 0 1 11 11 0 1 0 1 0 12 5 0 0 1 1 0 13 1 0 1 1 1 0 14 1 0 1 1 0 1 15 3 1 0 1 0 0 16 3 1 1 1 0 0 17 3 1 1 0 1 0 18 2 1 1 1 1 0 #-------------- #Problem 26/82 #------------- 100 5 24 0 2 1 1 0 1 0 1 13 0 1 0 0 0 2 10 0 1 0 1 0 3 14 1 1 0 0 0 4 5 0 0 0 1 0 5 2 0 1 0 1 1 6 2 0 1 1 0 0 7 8 1 0 0 1 0 8 5 0 0 1 1 0 9 3 1 1 1 0 0 10 9 1 0 0 0 0 11 6 1 1 0 0 1 12 2 1 1 1 1 0 13 2 0 0 0 0 1 14 1 1 1 1 0 1 15 2 0 1 1 1 0 16 2 1 0 1 0 0 17 1 1 0 0 0 1 18 1 1 0 1 1 0 19 6 0 0 1 0 0 20 1 1 1 1 1 1 21 1 0 0 1 1 1 22 1 0 1 1 0 1 23 1 0 0 1 0 1