Proposed by Barbara Smith
A number of cars are to be produced; they are not identical, because different options are available as variants on the basic model. The assembly line has different stations which install the various options (air-conditioning, sun-roof, etc.). These stations have been designed to handle at most a certain percentage of the cars passing along the assembly line. Furthermore, the cars requiring a certain option must not be bunched together, otherwise the station will not be able to cope. Consequently, the cars must be arranged in a sequence so that the capacity of each station is never exceeded. For instance, if a particular station can only cope with at most half of the cars passing along the line, the sequence must be built so that at most 1 car in any 2 requires that option. The problem has been shown to be NP-complete (Gent 1999).
The format of the data files is as follows:
This is the example given in (Dincbas et al., ECAI88):
10 5 6
1 2 1 2 1
2 3 3 5 5
0 1 1 0 1 1 0
1 1 0 0 0 1 0
2 2 0 1 0 0 1
3 2 0 1 0 1 0
4 2 1 0 1 0 0
5 2 1 1 0 0 0
A valid sequence for this set of cars is:
Class Options req. 0 1 0 1 1 0 1 0 0 0 1 0 5 1 1 0 0 0 2 0 1 0 0 1 4 1 0 1 0 0 3 0 1 0 1 0 3 0 1 0 1 0 4 1 0 1 0 0 2 0 1 0 0 1 5 1 1 0 0 0