Loading [Contrib]/a11y/accessibility-menu.js
Download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
%-----------------------------------------------------------------------------%
% Copyright (C) 2013 National ICT Australia and Monahsh University 2017
% Licenced under CC-BY-4.0 : http://creativecommons.org/licenses/by/4.0/
%-----------------------------------------------------------------------------%
%
% Author(s):
%   Original model, Flexible Job Shop Scheduling:
%   Andreas Schutt <andreas.schutt@nicta.com.au>
%   Changes, Stochastic Assignment and Scheduling Problem:
%   David Hemmi <david.hemmi@monash.edu>
%
%-----------------------------------------------------------------------------%
% Stochastic General Assignment Problem 
% First stage:
%    assign task to machines 
% Second stage:
%    based on observed processign times, schedule taks on respective machines
% Objective:
%    minimise expected makespan
%-----------------------------------------------------------------------------%
% Including files
 
include "globals.mzn";
 
%-----------------------------------------------------------------------------%
% Parameters
 
int: no_mach;   % Number of machines
int: no_jobs;   % Number of jobs
int: no_task;   % Number of total tasks
int: no_optt;   % Number of total optional tasks
 
set of int: Mach  = 1..no_mach;
set of int: Jobs  = 1..no_jobs;
set of int: Tasks = 1..no_task;
set of int: OptTs = 1..no_optt;
 
array [Jobs] of set of int: tasks;
array [Tasks] of set of int: optts;
 
array [OptTs] of int: optt_mach;
array [SCENARIOS1,OptTs] of int: optt_dur;
 
 
array [Jobs] of int: last_task = [ max(tasks[j]) | j in Jobs ];
%---------implications for multi scenarion solving ---------------
int: nbScenarios;
set of int: SCENARIOS1 = 1..nbScenarios;
int: first_scen;
int: last_scen;
set of int: SCENARIOS = first_scen..last_scen;
array[SCENARIOS1] of int: weights;
 
%-------end of multi scenario addons ----------------
array [Tasks] of int: task_job =
    [ min(j in Jobs where t in tasks[j])(j) | t in Tasks ];
array [SCENARIOS,Tasks] of int: task_mins =
    array2d(SCENARIOS,Tasks,[ sum(k in tasks[task_job[t]])(if k < t then task_mind[s,k] else 0 endif)
    |   s in SCENARIOS, t in Tasks ]);
array [SCENARIOS,Tasks] of int: task_maxs =
    array2d(SCENARIOS,Tasks,[ t_max[s] -
        sum(k in tasks[task_job[t]])(if k < t then 0 else task_mind[s,k] endif)
    |   s in SCENARIOS,  t in Tasks ]);
 
array [SCENARIOS,Tasks] of int: task_mind =
    array2d(SCENARIOS,Tasks,[ min(o in optts[t])(optt_dur[s,o]) | s in SCENARIOS,t in Tasks ]);
 
array [SCENARIOS,Tasks] of int: task_maxd =
    array2d(SCENARIOS,Tasks,[ max(o in optts[t])(optt_dur[s,o]) | s in SCENARIOS, t in Tasks ]);
 
    % Additional deirved parameters for optional tasks
    %
array [OptTs] of int: optt_task =
    [ min(t in Tasks where o in optts[t])(t) | o in OptTs ];
 
array[SCENARIOS1] of int: min_dur = [ min([optt_dur[s,t] | t in OptTs]) | s in SCENARIOS1];
array[SCENARIOS1] of int: max_dur = [ max([optt_dur[s,t] | t in OptTs]) | s in SCENARIOS1];
set of int: Durs = min(min_dur)..max(max_dur);
 
    % Parameters related to the planning horizon
    %
array[SCENARIOS1] of int: t_max = [sum(t in Tasks)(max(o in optts[t])(optt_dur[s,o])) | s in SCENARIOS1];
 
set of int: Times = 0..max(t_max);
 
%-----------------------------------------------------------------------------%
% Variables
 
    % Start time variables for tasks
    %
array [SCENARIOS,Tasks] of var Times: start =
    array2d(SCENARIOS,Tasks,[ let { var task_mins[s,t]..task_maxs[s,t]: k } in k | s in SCENARIOS, t in Tasks ]);
 
    % Duration variables for tasks
    %
array [SCENARIOS,Tasks] of var Durs: dur =
    array2d(SCENARIOS,Tasks,[ if task_mind[s,t] = task_maxd[s,t] then task_mind[s,t] else
        let { var task_mind[s,t]..task_maxd[s,t]: d } in d endif
    |   s in SCENARIOS,t in Tasks ]);
 
    % Variables whether an optional task is executed
    %
array [OptTs] of var bool: b;
 
array[SCENARIOS] of var Times: de_objective;
 
set of int: StochTimes = 0..sum(t_max);
var StochTimes: objective;
%-----------------------------------------------------------------------------%
% Constraints
 
    % Precedence relations
    %
constraint
    forall(s in SCENARIOS)(
        forall(j in Jobs, i in tasks[j] where i < last_task[j])(
            start[s,i] + dur[s,i] <= start[s,i + 1]
        )   
    );
 
    % Duration constraints
    %
constraint
    forall(o in OptTs,s in SCENARIOS)(
        let { int: t = optt_task[o] } in (
            if card(optts[t]) = 1 then
                b[o] = true
            else
                b[o] -> dur[s,t] = optt_dur[s,o]
            endif
        )
    );
 
    % Optional tasks' constraints
    %
constraint
    forall(t in Tasks where card(optts[t]) > 1)(
        ( sum(o in optts[t])(bool2int(b[o])) <= 1     )
    /\  ( exists(o in optts[t])(b[o])                 )
    );
 
constraint
    forall(t in Tasks where card(optts[t]) = 2)(
        let {
            int: o1 = min(optts[t]),
            int: o2 = max(optts[t])
        } in ( b[o1] <-> not(b[o2]) )
    );
 
    % Resource constraints
    %
constraint
    forall(m in Mach,s in SCENARIOS)(
        let {
            set of int: MTasks = { o | o in OptTs where optt_mach[o] = m }
        } in (
            cumulative(
                [ start[s,optt_task[o]] | o in MTasks ],
                [ optt_dur[s,o]         | o in MTasks ],
                [ bool2int(b[o])      | o in MTasks ],
                1
            )
        )
    );
 
% Objective constraint
constraint
    forall(s in SCENARIOS)(
        forall(j in Jobs)(start[s,last_task[j]] + dur[s,last_task[j]] <= de_objective[s])
    );
constraint
        objective = sum(s in SCENARIOS)(weights[s]*de_objective[s]);
%-----------------------------------------------------------------------------%
% Solve item
 
solve
    :: search
    minimize objective;
 
%------------------------------------------------------------------------------%
% Searches
 
ann: s_mindur   = int_search([dur[s,t] |s in SCENARIOS, t in Tasks], smallest, indomain_min, complete);
ann: s_minstart = int_search([start[s,t] |s in SCENARIOS, t in Tasks], smallest, indomain_min, complete);
ann: s_bool     = bool_search(b, input_order, indomain_max, complete);
ann: s_obj      = int_search(de_objective, input_order, indomain_min, complete);
 
ann: search = seq_search([s_mindur, s_bool, s_minstart, s_obj]);
 
%-----------------------------------------------------------------------------%
% Output
 
output
[   "objective = ", show(de_objective), ";\n",
    "stoch obj = ", show(objective), ";\n",
    "start = ", show(start), ";\n",
    "dur = ", show(dur), ";\n",
    "b = ", show(b), ";\n",
];