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Abstract. In the railway domain, the action of directing the traffic in
accordance with an established timetable is managed by a software. How-
ever, in case of real time perturbations, the initial schedule may become
infeasible or suboptimal. Subsequent decisions must then be taken man-
ually by an operator in a very limited time in order to reschedule the
traffic and reduce the consequence of the disturbances. They can for in-
stance modify the departure time of a train or redirect it to another
route. Unfortunately, this kind of hazardous decisions can have an un-
predicted negative snowball effect on the delay of subsequent trains. In
this paper, we propose a Constraint Programming model to help the op-
erators to take more informed decisions in real time. We show that the
recently introduced time-interval variables are instrumental to model this
scheduling problem elegantly. We carried experiments on a large Belgian
station with scenarios of different levels of complexity. Our results show
that the CP model outperforms the decisions taken by current greedy
strategies of operators.

1 Introduction

Since the dawn of the nineteenth century, development of railway systems has
taken a huge importance in many countries. Over the years, the number of trains,
the number of tracks, the complexity of networks increase and are still increas-
ing. In this context, the need of an efficient and reliable train schedule is crucial.
Indeed, a bad schedule can cause train conflicts, unnecessary delays, financial
losses, and a passenger satisfaction decrease. While earliest train schedules could
be built manually without using optimisation or computer based methods, it is
not possible anymore. Plenty of works deal with this problematic of building the
most appropriate schedule for general [1–3], or specific purposes [4, 5].

Practical schedules must also deal with real time perturbations. Disturbances,
technical failures or simply consequences of a too optimistic theoretical schedule
can cause delays which can be propagated on other trains. The initial schedule
may then become infeasible. Real-time modifications of the initial schedule there-
fore may be required. Several works already tackle this problem. A recent survey
(2014) initiated by Cacchiani et al. [6] recaps the different trends on models and
algorithms for real-time railway disturbance management. For instance, Fay et



al. [7] propose an expert system using fuzzy rules and Petri Net for the mod-
elling. Such a method requires to define the rules, which can differ according to
the station. Higgins et al. [8] propose to use local search methods in order to solve
conflicts. However, this work does not take into account the alternative routes
that trains can have in order to reach their destination, and that the planned
route remains not always optimal in case of real time perturbations. For that,
D’Ariano et al. [9] model the problem with an alternative graph formulation and
propose a branch and bound algorithm to solve it. They suggest to enrich their
method with a local search algorithm for rerouting optimization purposes [10].
Besides, some works consider the passenger satisfaction [11–13] in their model.
It is also known as the Delay Management Problem. Generally speaking, most
of the methods dealing with train scheduling are based on Mixed Integer Pro-
gramming [14–17]. However, the performance of Mixed Integer Programming
models for solving scheduling problems is known to be highly dependant of the
granularity of time chosen.

Constraint Based Scheduling [18], or in other words, applying Constraint Pro-
gramming on scheduling problems seems to be a good alternative over Mixed
Integer Programming. According to the survey of Bartak et al. [19], Constraint
Programming is particularly well suited for real-life scheduling applications. Fur-
thermore, several works [20–22] show that Constraint Programming can be used
for solving scheduling problems on large and realistic instances. By following this
trend, Rodriguez [23] proposes a Constraint Programming model for real-time
train scheduling at junctions. However, despite the good performances obtained,
this model can be improved. Firstly, the modelling do no use the strength of
global constraints which can provide a better propagation. Secondly, the search
can also be improved with heuristics and the use of Local Search techniques.
Finally, the objective function is only defined in function of train delays without
considering the passengers or the different categories of trains.

In this paper, we propose a new model for rescheduling the railway traffic in
a real time context. The contributions are as follows:

• A Constraint Programming model for rescheduling the traffic through real
time disturbances on the railway network. In addition to being a relevant
application for railway companies, the proposed model scales on a realistic
instance, the station of Courtrai (Belgium).

• The application of state of the art scheduling algorithms and relevant global
constraints in order to achieve a better propagation and a faster search.
Concretely, the conditional time-intervals introduced by Laborie et al. [24,
25] as well as their dedicated global constraints have been used. Furthermore,
the exploration of the state space has been carried out using Failure Directed
Search together with Large Neighbourhood Search [26].

• The formulation of an objective function aiming at the same time to min-
imise the total delay and to maximise the overall passenger satisfaction.
Furthermore, the objective function also considers the heterogeneity of the



traffic and different levels of priority between trains through a defined lex-
icographical order. For instance a freight train has a lower priority than a
passenger train.

The implementation of the model has been performed with IBM ILOG CP
Optimizer V12.6.3 [27] which is particularly fitted for designing scheduling mod-
els [28–30]. The next section describes the signalling principles and the com-
ponents considered for the modelling. Section 3 introduces the model and its
specificities. Experiments and discussions about its performances are then car-
ried in Section 4.

2 Signalling principles

In the railway domain, the goal of a signalling system is to ensure a safe control of
the traffic [31]. Such a task encompasses the regulation of the traffic. In Belgium,
it is mainly performed by a software, called the Traffic Management System, that
automatically regulates the traffic according to predefined rules. Let us consider
the fictive station presented in Fig. 1. Several components are depicted on it:

T2T1 T3

T4 T5 T6 T7

S1

S2

S3

T8 T9 T10 T11

R1
R2IT1
��

Fig. 1: Track layout of a fictive station with two routes (R1 and R2).

• The track segments (e.g. T1) are the portions of the railway structure
where a train can be detected. They are delimited by the joints (a`).

• The signals (e.g. S1) are the devices used to control the train traffic. They
are set on a proceed state (green) if a train can safely move into the station
or in a stop state (red) otherwise.

Besides these physical components, signalling also involves logical structures:



• The routes correspond to the paths that trains can follow inside a station in
order to reach a destination. They are expressed in terms of track segments
and signals. For instance, R1 is a route going from T4 to T7 by following the
path [T4, S2, T5, T2, T6]. The first track segment of a route is always in front
of a signal which is initially at a stop state and which turns green when the
Traffic Management System allows the train to proceed. The track segment
used for the destination is not a part of the route. This action is called
a route activation. At this step, all the track segments forming the route
after the start signal are reserved and cannot be used by another train. Once
a route has been activated, the train can move through it in order to reach
its destination. For instance, once a train following route R1 has reached
T6 and is not on the previous track segments anymore, T5 and T2 can be
released in order to allow other trains to use them. Detailed explanations
about the route management is provided in [32].

• The itineraries correspond to non physical paths from a departure point
to an arrival point. An itinerary can be constituted of one or several routes
which can be alternative. For instance, as depicted in Fig. 1, two routes (R1
and R2) are possible in order to accomplish itinerary IT1 from T4 to T7.
In normal situations, a route is often preferred than others, but in case of
perturbations, the route causing the less conflicts is preferred.

According to an established timetable, the Traffic Management System acti-
vates routes in order to ensure the planned traffic. However, in case of real time
perturbations, signalling must be handled manually and the actions to perform
are decided by human operators. The procedure follows this pattern:

1. The Traffic Management System has predicted a future conflict caused by
perturbations on the traffic.

2. The operators controlling the traffic analyse the situation and evaluate the
possible actions to do in order to minimise the consequences of the pertur-
bations. Besides the safety, the criterion considered for the decision is the
sum of delays per passenger. In other words, the objective is to minimise the
sum of delays of trains pondered by their number of passenger. Furthermore,
some trains can have a higher priority than others.

3. According to the situation, they perform some actions (stopping a train,
changing its route, etc.) or do nothing.

In this work, we are interested by the actions of operators facing up real time
perturbations. In such situations, they must deal with several difficulties:

• The available time for analysing the situation and taking a decision can be
very short according to the criticality of the situation (less than one minute).

• For large stations with a dense traffic, particularly during the peak hours,
the effects of an action are often difficult to predict.

• The number of parameters that must be considered (type of trains, number
of passengers, etc.) complicates the decision.



Such reasons can lead railway operators to take decisions that will not im-
prove the situation, or worse, will degrade it. Most of the time, the decision taken
is to give the priority either to the first train arriving at a signal, or to the first
one that must leave the station [9]. However, it is not always the best decision.
It is why we advocate the use of a Decision Support Tool based on optimisation
in order to assist operators in their decisions. The requirement for this software
is then to provide a good solution to this rescheduling problem within a short
and parametrisable computation time.

3 Modelling

This section presents how we model the problem. Basically, the goal is to schedule
adequately trains in order to bring them to their destination. The decision is then
to chose, for each train, which route must be activated and at what time. Each
track segment can host at most one train at a time. Furthermore, they can also
be reserved only for one train. An inherent component of scheduling problems
are the activities. Roughly speaking, a classical activity A is modelled with three
variables, a start date s(A), a duration d(A) and an end date e(A). The activity
is fixed if the three variables are reduced to a singleton. Our model contains
three kinds of activities that are linked together:

• The itinerary activities define the time interval when a train follows a
particular itinerary. Each train has one and only one itinerary activity. We
define At,it as the activity for itinerary it of train t.

• The route activities define the interval when a train follows a particular
route of an itinerary. We define At,it,r as the activity for route r of itinerary
it related to train t.

• The train activities correspond to the movements of a train through the
station in order to complete a route. Such activities use the track segments
as resources. We define At,it,r

i as the ith train activity of route r of itinerary
it and related to train t. Inside a same route, there are as many train ac-
tivities as the number of elements on the route path. The element can be a
track segment or a signal. For instance, by following the example of Fig. 1,
At,IT1,R1

1 is a train activity related to track segment T4, At,IT1,R1
2 to signal

S2, At,IT1,R1
3 to T5, etc.

One particularity of our problem is that some activities are optional. In other
words, they may or may not be executed in the final schedule. For instance, let
us assume that a train has to accomplish an itinerary from T4 to T7. To do
so, it can follow either R1, or R2. If R1 is chosen, the activity related to R2
will not be executed. For that, we model optional activities with the conditional
time-interval variables introduced by Laborie et al. [24, 25] that implicitly encap-
sulate the notion of optionality. It also allows an efficient propagation through
dedicated global constraints (alternative and span for instance) as well as an
efficient search. Roughly speaking, when an activity is fixed, it can be either
executed, or non executed. If the activity is executed, it behaves as a classical



activity that executes on its time interval, otherwise, it is not considered by any
constraint. This functionality is modelled with a new variable x(A) ∈ {0, 1} for
each activity A such that x(A) = 1 if the activity is executed and x(A) = 0
otherwise.

Fig. 2 presents how the different activities are organised for the case study
shown in Fig. 1 for a train t. Activity At,IT1 is mandatory, it models the fact
that the train has to reach its destination. Alternative constraint ensures that
the train can follow only one route to do so, R1 or R2. The other route activity is
not executed. Furthermore, the start date and the end date of the chosen route
is synchronised with the itinerary activity. Span constraint enforces the route
activity to be synchronised with the start date of the first track segment activity
and with the end date of the last track segment activity. For instance, At,IT1,R1

is synchronised with the start date of At,IT1,R1
1 and the end date of At,IT1,R1

5 .
The detailed explanations of alternative and span constraints are provided
thereafter.
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Fig. 2: Breakdown structure of the model using alternative and span con-
straints.

As we will see, conditional time-interval variables facilitate the construction
of our model. Let us now define the different components of the model.

Parameters Two entities are involved in our model: the trains and the track
segments. Table 1 recaps the parameters considered. The speed, number of pas-
sengers, and length are straightforward to understand. The estimated arrival
time of a train is a prediction of its arrival time at the station. The earliest start
time defines a lower bound on the starting time of a train. In other words, a
train cannot start its itinerary before this time. Indeed, a train cannot leave its
platform before the time announced to the passengers. The planned completion
time is the time announced on the initial schedule. It defines when the train is
supposed to arrive at a platform. It is used in the objective function in order



to compute the delays generated. The category defines the nature of the train.
More explanations about the category is provided in Section 3.

Table 1: Parameters related to a train t or a track segment ts.
Entity Parameter Name Meaning

Train

Speed sptt Speed of t
Passengers pt Number of passengers of t

Estimated Arrival Time eatt When t arrives to the station
Earliest Start Time estt Lower bound on start time of t

Planned Completion Time pctt When t must complete its journey
Category catt Category of t

Track Segment Length lgtts Length of ts

Decision Variables As previously said, the problem is to chose, for each train,
which route must be activated and at what time. Such a problem can be seen as
a slightly variant of a job shop scheduling problem [33] where the machines rep-
resent the track segments and the jobs represent train activities. The difference
are as follows:

• Some activities are optional. In other words, they may or not be executed
in the final schedule.

• The end of a train activity must be synchronised by the start of the next
one.

• A train activity can use more than one resource. When a train is on a partic-
ular track segment, its current activity uses the current track segment as well
as the next ones that are reserved for the route. For instance, let us consider
the route activity At,IT1,R1. The related train activities with their resources
are At,IT1,R1

1 , At,IT1,R1
2 , At,IT1,R1

3 , At,IT1,R1
4 and At,IT1,R1

5 . The resources
used by the activities are (T4), (T4, S2), (T5, T2, T6), (T2, T6) and (T6) re-
spectively. Let us remember from Section 2 that only the track segments
located after the start signal are reserved through the route activation. Con-
cerning the initial track segment T4, it is released after the train has passed
the start signal.

From a Constraint Based Scheduling approach, the problem is to assign a
unique value to each train activity. The decision variables and their domain are,
for all trains t, itineraries it, routes r and indexes i:

s(At,it,r
i )

{
∈ [eatt, horizon] if t on track segment ts
∈ [estt, horizon] if t in front of a signal

(1)

d(At,it,r
i )

{
= lgtts/spdt if t on track segment ts
∈ [0, horizon] if t in front of a signal

(2)



e(At,it,r
i ) = s(At,it,r

i ) + d(At,it,r
i ) (3)

x(At,it,r
i ) ∈ {0, 1} (4)

The domain is determined in order to be as restricted as possible without
removing a solution. Equation (1) indicates that an activity cannot begin before
the estimated arrival time of t. The upper bound of the start date is defined by
the time horizon considered. More details about the horizon chosen is provided
in Section 4. Equation (2) models the time required to achieve the activity .If
t is on a track segment, the duration is simply the length of the track segment
divided the speed of t. Otherwise, the time that t will have to wait is unknown.
Equation (3) is an implicit constraint of consistency. Finally, Equation (4) states
that the activity is optional. Concerning route and itinerary activities, they are
linked to train activities through constraints.

Constraints This section describes the different constraints considered. Most
of them are expressed in term of a train, an itinerary and a route. Let us express
T as the set of trains, ITt as the set of possible itineraries for t ∈ T , Rit the set
of possible routes for it ∈ ITt and Nr as the number of train activities of a route
r ∈ Rit. Furthermore, let us state TS as the set of all the track segments in the
station.

Precedence This constraint (Equation (5)) ensures that train activities must be
executed in a particular order. It links the end of a train activity At,it,r

i with the

start of At,it,r
i+1 .

e(At,it,r
i ) = s(At,it,r

i+1 ) ∀t ∈ T, ∀it ∈ ITt,∀r ∈ Rit,∀i ∈ [1, Nr) (5)

All precedence constraints are aggregated into a temporal network in order
to have a better propagation [24, 34]. Instead of having a bunch of independent
constraints, they are considered as a global constraint.

Execution Consistency As previously said, some activities are alternative. If
a route is not chosen for a train, none of activities At,it,r

i will be executed.
Otherwise, all of them must be executed. Equation (6) states that all the train
activities related to the same environment must have the same execution status.

x(At,it,r
1 ) ≡ x(At,it,r

i ) ∀t ∈ T, ∀it ∈ ITt,∀r ∈ Rit,∀i ∈]1, Nr] (6)



Alternative Introduced by Laborie and Rogerie [24], this constraint models an
exclusive alternative between a bunch of activities. It is expressed in Equation
(7).

alternative
(
At,it,

{
At,it,r

∣∣∣r ∈ Rit

})
∀t ∈ T, ∀it ∈ ITt (7)

It means that when At,it is executed, then exactly one of the route activities
must be executed. Furthermore, the start date and the end date of At,it must
be synchronised with the start and end date of the executed route activity. if
At,it is not executed, none of the other activities can be executed. In our model,
At,it is a mandatory activity. It models the fact that each train must reach its
destination through an itinerary but for that, it must follow exactly one route.

Span Also introduced in [24], this constraint states that an executed activity
must span over a bunch of other executed activities by synchronising its start
date with the earliest start date of other executed activities and its end date
with the latest end date. It is expressed in Equation 8.

span
(
At,it,r,

{
At,it,r

i

∣∣∣i ∈ [1, Nr]
})

∀t ∈ T, ∀it ∈ ITt,∀r ∈ Rit (8)

It models the fact that the time taken by a train to complete a route is
equal to the time required for crossing each of its components. If the route is not
chosen, then no activity will be executed. A representation of span constraint is
shown in Fig. 2.

Unary Resource An important constraint is that trains cannot move or reserve
a track segment that is already used for another train. It is a unary resource

constraint (Equation (9)). Each track segment can then be reserved only once
at a time. Let us state ACTts as the set of all the train activities using track
segment ts.

noOverlap
({

A
∣∣∣A ∈ ACTts

})
∀ts ∈ TS (9)

The semantic of this constraint, as well as comparisons with existing frame-
works, is presented in [25] which extends state of the art filtering methods in
order to handle conditional time-interval variables.

Train Order Consistency This last constraint ensures that trains cannot overtake
other trains if they are on the same track segment. An illustration of this scenario
is presented in Fig. 3. Even if train t2 has a higher priority than t1, it cannot
begin its activities before t1 because t1 has an earlier estimated arrival time. In
other words, on each track segment in front of a signal, the start date of the first
activity of each train is sorted by their estimated arrival time.
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Fig. 3: Two trains waiting on the same track segment.

Let us state TSB ⊂ TS as the set of all first track segments, Ntsb as the
number of trains beginning their itinerary on track segment tsb, and (ABtsb

i ) as
the sequence of the first activities of trains ti beginning on tsb with i ∈ [1, Ntsb].
The sequence is ordered by the estimated arrival time of trains ti. Then, train
order consistency constraint can be expressed through Equation (10).

s(ABtsb
i−1) < s(ABtsb

i ) ∀tsb ∈ TSB,∀i ∈]1, Ntsb] (10)

These constraints are also considered in the temporal network.

Objective Function The criterion frequently used for the objective function
is the sum of train delays [23]. Let us state jctt as the journey completion time
of a train t. It corresponds to the end date of the last train activity of t. The
delay dt of t is expressed in Equation 11.

dt = max
(

0, jctt − pctt

)
(11)

The max function is used to nullify the situation where t is in advance on its
schedule. Equation 12 presents a first objective function.

min
(∑

t∈T
dt

)
(12)

However, in real circumstances, railway operators must also consider other
parameters such as the number of passengers and the priority of trains. Section 3
introduced the category parameter, here are the different categories considered:

1. Maintenance or special vehicles (C1).
2. Passenger trains with a correspondence (C2).
3. Simple passenger trains (C3).
4. Freight trains (C4).

Such categories are sorted with a decreasing order according to their priority.
Special vehicles have then the highest priority and freight trains the lowest.
Furthermore, if a passenger train has more passengers than another one, the cost
of the delay will be more important. The objective function is then threefold:



• Scheduling trains according to their priority. For instance, a maintenance
vehicle must be scheduled before a passenger train, if possible.

• Minimising the sum of delays.
• Maximising the overall passenger satisfaction. The passenger satisfaction

decreases if its train is late.

A second objective function can then be expressed (Equation 13).

lex min

( ∑

t∈C1

dt,
∑

t∈C2

pt × dt,
∑

t∈C3

pt × dt,
∑

t∈C4

dt

)
(13)

Where pt corresponds to the number of passengers of train t, as defined in
Table 1. This equation gives a lexicographical ordering of trains according to
their category from C1 to C4. For passenger categories (C2 and C3) the delay
is expressed by passengers. In this way, the more is the number of passenger,
the greater will be the penalty for delays. The objective is then to minimise this
expression with regard to its lexicographical ordering.

Search Phase The exploration of the state space is performed with the algo-
rithm of Vilim et al. [26] which combines a Failure-Directed Search with Large
Neighborhood Search. The implementation proposed on CP Optimizer V12.6.3
[27] is particularly fitted to deal with conditional time-interval variables, prece-
dence constraints, and optional resources. The search is performed on execution
and on start date variables. Concerning the variable ordering, trains are sorted
according to their category. For instance, activities related to passenger trains
will be assigned before activities of freight trains. The value ordering is let by
default.

4 Experiments

This section evaluates the performance of the Constraint Programming model
through different experiments. Concretely, we compare our solution with the so-
lutions obtained with classical dispatching methods on a realistic station: Cour-
trai. Its track layout is presented in Fig. 4. It contains 23 track segments, 14
signals, 68 itineraries and 84 possible routes. Three systematic strategies are
commonly used in practice:

• First Come First Served (FCFS) strategy gives the priority to the trains
according to their estimated arrival time.
• Highest Delay First Served (HDFS) strategy gives the priority to the

train that has the earliest planned completion time.
• Highest Priority First Served (HPFS) strategy gives the priority to a

train belonging to the category with the highest priority. The planned com-
pletion time is then used as a tie breaker for trains of a same category.
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Fig. 4: Track layout of Courtrai.

Furthermore, three meta-parameters must be considered for the experiments,
the time horizon, the decision time and the number of trains. The time horizon
defines an upper bound on the estimated arrival time of trains. According to
D’Ariano et al. [9], the practical time horizon for railway managers is usually
less than one hour. In our experiments, we considered three time horizons (30
minutes, one hour and two hours). The decision time is the time that railway
operators have at disposal for taking a decision. It is highly dependant to the
criticality of the current situation. However, according to Rodriguez [23], the
system must be able to provide an acceptable solution within 3 minutes for
practical uses. Concerning the number of trains, we considered scenarios having
5, 10, 15, 20, 25 and 30 trains.

Experiments have be done under the assumption that we allow a feasible
schedule. This responsibility is beyond the scope of the station. Two situations
are considered: a homogeneous and a heterogeneous traffic.

All the experiments have been realised on a MacBook Pro with a 2.6 GHz In-
tel Core i5 processor and with a RAM of 16 Go 1600 MHz DDR3 using a 64-Bit
HotSpot(TM) JVM 1.8 on El Capitan 10.11.15. The model has been designed
with CP Optimizer V12.6.3 and the optimisation is performed with four workers.

Homogeneous traffic In this first situation, the number of passengers and the
category are not considered. Each train has then the same priority and Equa-
tion 12 is the objective function used. Table 2 recaps the experiments performed.



Each scenario is repeated one hundred times with a random schedule. The dif-
ferent values of the schedule are generated randomly with uniform distributions.
For instance, let us consider a schedule from 1pm to 3pm with 10 trains. For
each train, we randomly choose its itinerary among the set of possible itineraries,
its departure time and its expected arrival time in the interval [1pm, 3pm]. The
delay indicated for each strategy corresponds to the arithmetic mean among all
the tests. For each scenario, the average, the minimum and the maximum im-
provement ratio of the CP solution in comparison to the best solution obtained
with classical methods is also indicated. POS indicates the number of tests where
the CP approach has improved the solution while OPT indicates the number of
tests where CP has reached the optimum.

As we can see, CP improves the solution for almost all the tests. The average
improvement ratio is above 20% in all the scenarios. Optimum is often reached
(more than 75 % of the instances) when 10 trains or less are considered.

Table 2: Comparison between CP and classical scheduling approaches for an
homogeneous traffic with a decision time of 3 minutes.

Horizon
# Average Delay (min.) Improvement Ratio (%) POS OPT

trains FCFS HDFS CP Mean Min Max (x/100) (x/100)

2
h
o
u
rs

5 192.06 191.10 148.91 22.08 -7.69 100.00 99 97
10 800.40 797.82 575.04 27.92 5.13 66.08 100 85
15 1917.95 1896.64 1341.53 29.27 1.16 58.549 100 28
20 3457.45 3397.03 2414.45 28.92 10.26 53.29 100 0
25 5581.10 5632.69 3993.04 28.45 8.58 48.37 100 0
30 8004.84 8018.76 5714.69 28.61 14.35 43.61 100 0

1
h
o
u
r

5 225.36 228.75 172.06 23.65 0.71 100.00 100 96
10 911.01 906.32 664.18 26.72 3.96 62.41 100 83
15 2128.34 2104.95 1494.67 28.99 5.93 51.29 100 17
20 3675.72 3680.00 2612.6 28.92 8.25 55.86 100 1
25 5971.54 6004.81 4246.55 28.89 9.41 53.67 100 0
30 8595.56 8576.92 6085.51 29.05 7.89 45.51 100 0

3
0

m
in

u
te

s

5 231.16 229.06 173.95 24.06 1.49 100.00 100 94
10 950.30 929.71 692.18 25.55 3.12 64.32 100 83
15 2145.36 2161.20 1535.86 28.41 7.927 51.61 100 14
20 3858.67 3888.29 2728.0 29.30 6.63 52.50 100 0
25 6137.02 6135.59 4320.14 29.59 7.75 53.38 100 0
30 8863.49 8775.84 6357.08 27.56 8.72 49.08 100 0

Heterogeneous traffic In this second situation, we use Equation 13 for the ob-
jective function. The number of passengers and the category are then considered.
As for the heterogeneous case, such values are chosen randomly with a uniform
distribution. Among the classical approaches, only HPFS deals with an hetero-



geneous traffic. Table 3 recaps the experiments performed. Optimisations are
performed sequentially for each category. The time is allocated according to the
priority of categories. The allocation is then not done a priori but dynamically
according to the time taken by the successive optimisations. Unlike the previous
experiments, we do not compute the improvement ratio, but the number of ex-
periences where CP has improved the solution obtained with HPFS. Our choice
was motivated by the subjective aspect of defining an improvement ratio for a
heterogeneous traffic. For instance there is no clear preference between decreas-
ing the delay of one train of category C1 and of 10 trains with lower priorities.
This kind of questions usually requires the consideration of signalling operators.
We consider that CP has improved the solution when the sum of delay per cate-
gory is lexicographically lower than the result provided by HDFS. For the three
horizons considered and for 100 tests per scenario, CP improves the solution for
almost all the tests, even when the optimum is not reached.

Table 3: Comparison between CP and HPFS approach for an heterogeneous
traffic with a decision time of 3 minutes.

Horizon # trains POS (x/100) OPT (x/100)

2
h
o
u
rs

5 100 99
10 98 87
15 100 64
20 100 51
25 100 13
30 100 5

1
h
o
u
r

5 100 99
10 99 89
15 100 75
20 100 51
25 100 22
30 100 8

3
0

m
in

u
te

s

5 100 99
10 99 87
15 100 75
20 100 52
25 100 26
30 100 7

Scalability This experiment deals with the scalability of the CP model in func-
tion with the decision time. We observed that setting the decision time to 10
minutes instead of 3 minutes do not increase significantly the performances. The
gain of the improvement ratio is less than 1% for 60 random instances on an
homogeneous traffic of 5,10,15,20,25 or 30 trains (10 instances per configura-
tion). We can then conclude that even if the CP approach gives a feasible and



competitive solution within 3 minutes, the quality of the solution do not increase
significantly with time.

Criticality In some cases, railway operators do not have an available decision
time of 180 seconds, they have to react almost instantly because of the criticality
of the situation. For this reason, we analysed how the CP model performs with
a decision time lower than 10 seconds. To do so, we recorded the number of
experiments where the CP approach has improved the solution in comparison to
FCFS and HDFS strategies. For the scenarios depicted in Table 2, we observed
that CP provides a same or better solution in more than 99% of the cases and
can then also be used to deal with critical situations.

Reproducibility A shortcoming in the literature about this field of research is
the lack of reproducibility. To overcome this lack, we decided to provide infor-
mation about our instances and the tests performed1. The information provided
are enough to build a model, perform experiments and to compare them with
ours.

5 Conclusion

Nowadays, railway operators must deal with the problem of rescheduling the
railway traffic in case of real time perturbations in the network. However, the
systematic and greedy strategies (FCFS, HDFS and HPFS) currently used for
this purpose often give a suboptimal decision. In this paper, we presented a CP
model for rescheduling the railway traffic on real time situations. The modelling
is based on the recently introduced time-interval variables. Such a structure
allows to design the model elegantly with variables and global constraints espe-
cially dedicated for scheduling. Finally, an objective function taking into account
the heterogeneity of the traffic is presented. Experiments have shown that a dis-
patching better than the classical approaches is obtained in less than 3 minutes
in almost all the situations that can occur in a large station, even when the
optimum is not reached.

Two aspects are considered for our future works: improving the model and its
scalability. Firstly, we plan to modify the model and analyse the consequences.
For instance, we will use a xor instead of alternative constraint. Secondly, we
will consider experiments on larger areas covering several stations.

Acknowledgments This research is financed by the Walloon Region as part
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formed with ILOG CP Optimizer through the academic initiative of IBM.

1 Available at https://bitbucket.org/qcappart/qcappart_opendata
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rerouting of passengers. Transportation Science 46 (2012) 74–89

13. Dollevoet, T., Huisman, D., Kroon, L., Schmidt, M., Schöbel, A.: Delay manage-
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