Download
#!/usr/bin/env python3
# program to convert from queens and ruled out diagonals to report stats and convert to dimacs
import sys
def An(n):
assert( n % 6 == 1 or n % 6 == 5)
res = []
for i in range(n):
res.append([i,(2*i)%n])
return( res)
def Bn(n):
assert( n % 6 == 1 or n % 6 == 5)
res = []
for i in range(n):
res.append([(2*i)%n,i])
return( res)
def timesn(n,q):
return [q[0]*n,q[1]*n]
def plusqueen(q1,q2):
return [q1[0]+q2[0],q1[1]+q2[1]]
def offsetqueens(n,offsetq,queens):
return [plusqueen(timesn(n,offsetq),q) for q in queens]
q19col0 = [0,8]
q19col19 = [19,8]
q19row0 = [17,0]
q19row19 = [17,19]
q19rest = [[1,12],[2,17],[3,7],[4,10],[5,15],[6,1],[7,16],[8,13],[9,2],[10,6],[11,18],[12,3],[13,5],[14,11],[15,9],[16,14],[18,4]]
def max(numbers):
assert(len(numbers) != 0)
max=numbers[0]
for i in range(1,len(numbers)):
if numbers[i] > max:
max=numbers[i]
return max
def checkrowcols(Queens):
if(Queens == []):
return True
n1 = len(Queens)
n2 = max([q[0] for q in Queens] + [q[1] for q in Queens]) + 1
if( n1 > n2):
return False
rowbits = [0 for i in range(n2)]
colbits = [0 for i in range(n2)]
for q in Queens:
colbits[q[0]] = 1
rowbits[q[1]] = 1
return ( (len([1 for i in range(n2) if rowbits[i] != 0]) == n1) and
(len([1 for i in range(n2) if colbits[i] != 0]) == n1) )
def checkdiags(Queens):
if(Queens == []):
return True
n1 = len(Queens)
n2 = max([q[0] for q in Queens] + [q[1] for q in Queens]) + 1
if( n1 > n2):
return False
d1bits = [0 for i in range(2*n2)]
d2bits = [0 for i in range(2*n2)]
for q in Queens:
d1bits[q[0]+q[1]] = 1
d2bits[q[0]-q[1]+n2-1] = 1
return ( (len([1 for i in range(2*n2) if d1bits[i] != 0]) == n1) and
(len([1 for i in range(2*n2) if d2bits[i] != 0]) == n1) )
def checknoattack(Queens):
return checkrowcols(Queens) and checkdiags(Queens)
### e.g. reduce3to2(7,[],[],[])
def reduce3to2(M3):
n3=M3[0]
P3=M3[1]
m3=M3[2]
C3=M3[3]
R3=M3[4]
assert len(C3) == len(R3), ("different numbers of rows and columns: ")
assert m3 == len(C3)+len(P3), "m inconsistent with length of cols and preplaced queens"
assert m3 <= n3, ("more queens to place than places to put them: " + str(m3) + " " + str(n3))
if P3 or C3 or R3:
ncheck = max([q[0] for q in P3] + [q[1] for q in P3] + C3 + R3)
assert ncheck < n3, ("Row or column required more than input value of n")
assert(checkrowcols(P3)), ("preplaced queens have two in same row or column: " + str(P3))
Cprime = C3 + [q[0] for q in P3]
Rprime = R3 + [q[1] for q in P3]
assert len(set(Rprime)) == m3, "preplaced queen in one of required rows"
assert len(set(Cprime)) == m3, "preplaced queen in one of required cols"
if not checkdiags(P3):
return [n3,P3]
if n3%3 == 2:
nprime = n3*2+1
else:
nprime = n3*2-1
an = An(nprime)
bn = Bn(nprime)
qscol0 = [q for q in offsetqueens(nprime,q19col0,an) if q[0] not in Cprime]
qsrow0 = [q for q in offsetqueens(nprime,q19row0,bn) if q[1] not in Rprime]
qsrest = qscol0+qsrow0
for qr in q19rest:
qsrest += [q for q in offsetqueens(nprime,qr,an)]
Cprime.sort()
Rprime.sort()
QC = [[i,2*Cprime[i]] for i in range(m3)]
QR = [[2*Rprime[i],i] for i in range(m3)]
result = P3
result += offsetqueens(nprime,q19col19,QC)
result += offsetqueens(nprime,q19row19,QR)
result += qsrest
assert(checknoattack(result)),("Bug: computed attacking set of queens: "+str(result))
return [19*nprime+m3,result]
def reduce4to3(n4,m4,C4,R4,D4diff,D4sum):
n3=n4*7-3
m3=m4+len(D4diff)+len(D4sum)
Qdiff = [ [6*n4-3-d,3*n4-1-2*d] for d in D4diff ]
Qsum = [ [2*n4-2-d,n4+2*d] for d in D4sum ]
C3=[c+3*n4-2 for c in C4]
R3=R4
return [n3,Qdiff+Qsum,m3,C3,R3]
# Special case where all rows and columns allowed
def reducesimple4to3(M4Simple):
n = M4Simple[0]
Ddiff = M4Simple[1]
Dsum = M4Simple[2]
return reduce4to3(n,n,list(range(n)),list(range(n)),Ddiff,Dsum)
# Numbers as read from input file
# numbers[0] = n
# numbers[1] = maxdiags
# numbers[2,4,6 ... ] = diagonal, +n-1 for difference diagonals
# numbers[3,5,7... ] = 1 for sum diag, 0 for diff
def diagtosimple4(numdiags,numbers):
n = numbers[0]
maxdiags = numbers[1]
assert numdiags <= maxdiags, "more diagonals requested than available in input"
assert len(numbers) >= numdiags*2 + 2, "fewer diagonals than claimed"
Ddiff=[]
Dsum=[]
for i in range(numdiags):
d=numbers[i*2+2]
direction=numbers[i*2+2+1]
assert(direction == 0 or direction == 1)
if direction == 1:
Dsum.append(d)
else:
Ddiff.append(d-n+1)
return [n,Ddiff,Dsum]
def reducesimple4to2(M4Simple):
return reduce3to2(reducesimple4to3(M4Simple))
def printqueens2(M2):
print("letting n = ",M2[0])
print("letting init = ",M2[1])
def printqueensfromdiag(numdiags,numbers):
printqueens2(reducesimple4to2(diagtosimple4(numdiags,numbers)))