1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 | # Copyright 2010 Hakan Kjellerstrand hakank@gmail.com # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Killer Sudoku in Google CP Solver. ''' Killer sudoku (also killer su doku, sumdoku, sum doku, addoku, or samunamupure) is a puzzle that combines elements of sudoku and kakuro. Despite the name, the simpler killer sudokus can be easier to solve than regular sudokus, depending on the solver's skill at mental arithmetic; the hardest ones, however, can take hours to crack. ... The objective is to fill the grid with numbers from 1 to 9 in a way that the following conditions are met: * Each row, column, and nonet contains each number exactly once. * The sum of all numbers in a cage must match the small number printed in its corner. * No number appears more than once in a cage. (This is the standard rule for killer sudokus, and implies that no cage can include more than 9 cells.) In 'Killer X', an additional rule is that each of the long diagonals contains each number once. ''' Here we solve the problem from the Wikipedia page, also shown here The output is: 2 1 5 6 4 7 3 9 8 3 6 8 9 5 2 1 7 4 7 9 4 3 8 1 6 5 2 5 8 6 2 7 4 9 3 1 1 4 2 5 9 3 8 6 7 9 7 3 8 1 6 4 2 5 8 2 1 7 3 9 5 4 6 6 5 9 4 2 8 7 1 3 4 3 7 1 6 5 2 8 9 Compare with the following models: * MiniZinc: http://www.hakank.org/minizinc/killer_sudoku.mzn This model was created by Hakan Kjellerstrand (hakank@gmail.com) Also see my other Google CP Solver models: http://www.hakank.org/google_or_tools/ """ import sys from constraint_solver import pywrapcp # # Ensure that the sum of the segments # in cc == res # def calc(cc, x, res): solver = x.values()[ 0 ].solver() # sum the numbers solver.Add(solver. Sum ([x[i[ 0 ] - 1 ,i[ 1 ] - 1 ] for i in cc]) = = res) def main(): # Create the solver. solver = pywrapcp.Solver( 'Killer Sudoku' ) # # data # # size of matrix n = 9 # For a better view of the problem, see # hints # [sum, [segments]] # Note: 1-based problem = [ [ 3 , [[ 1 , 1 ], [ 1 , 2 ]]], [ 15 , [[ 1 , 3 ], [ 1 , 4 ], [ 1 , 5 ]]], [ 22 , [[ 1 , 6 ], [ 2 , 5 ], [ 2 , 6 ], [ 3 , 5 ]]], [ 4 , [[ 1 , 7 ], [ 2 , 7 ]]], [ 16 , [[ 1 , 8 ], [ 2 , 8 ]]], [ 15 , [[ 1 , 9 ], [ 2 , 9 ], [ 3 , 9 ], [ 4 , 9 ]]], [ 25 , [[ 2 , 1 ], [ 2 , 2 ], [ 3 , 1 ], [ 3 , 2 ]]], [ 17 , [[ 2 , 3 ], [ 2 , 4 ]]], [ 9 , [[ 3 , 3 ], [ 3 , 4 ], [ 4 , 4 ]]], [ 8 , [[ 3 , 6 ], [ 4 , 6 ],[ 5 , 6 ]]], [ 20 , [[ 3 , 7 ], [ 3 , 8 ],[ 4 , 7 ]]], [ 6 , [[ 4 , 1 ], [ 5 , 1 ]]], [ 14 , [[ 4 , 2 ], [ 4 , 3 ]]], [ 17 , [[ 4 , 5 ], [ 5 , 5 ],[ 6 , 5 ]]], [ 17 , [[ 4 , 8 ], [ 5 , 7 ],[ 5 , 8 ]]], [ 13 , [[ 5 , 2 ], [ 5 , 3 ],[ 6 , 2 ]]], [ 20 , [[ 5 , 4 ], [ 6 , 4 ],[ 7 , 4 ]]], [ 12 , [[ 5 , 9 ], [ 6 , 9 ]]], [ 27 , [[ 6 , 1 ], [ 7 , 1 ],[ 8 , 1 ],[ 9 , 1 ]]], [ 6 , [[ 6 , 3 ], [ 7 , 2 ],[ 7 , 3 ]]], [ 20 , [[ 6 , 6 ], [ 7 , 6 ], [ 7 , 7 ]]], [ 6 , [[ 6 , 7 ], [ 6 , 8 ]]], [ 10 , [[ 7 , 5 ], [ 8 , 4 ],[ 8 , 5 ],[ 9 , 4 ]]], [ 14 , [[ 7 , 8 ], [ 7 , 9 ],[ 8 , 8 ],[ 8 , 9 ]]], [ 8 , [[ 8 , 2 ], [ 9 , 2 ]]], [ 16 , [[ 8 , 3 ], [ 9 , 3 ]]], [ 15 , [[ 8 , 6 ], [ 8 , 7 ]]], [ 13 , [[ 9 , 5 ], [ 9 , 6 ],[ 9 , 7 ]]], [ 17 , [[ 9 , 8 ], [ 9 , 9 ]]]] # # variables # # the set x = {} for i in range (n): for j in range (n): x[i,j] = solver.IntVar( 1 , n, 'x[%i,%i]' % (i,j)) x_flat = [x[i,j] for i in range (n) for j in range (n)] # # constraints # # all rows and columns must be unique for i in range (n): row = [x[i,j] for j in range (n)] solver.Add(solver.AllDifferent(row)) col = [x[j,i] for j in range (n)] solver.Add(solver.AllDifferent(col)) # cells for i in range ( 2 ): for j in range ( 2 ): cell = [x[r,c] for r in range (i * 3 ,i * 3 + 3 ) for c in range (j * 3 ,j * 3 + 3 )] solver.Add(solver.AllDifferent(cell)); # calculate the segments for (res, segment) in problem: calc(segment, x, res) # # search and solution # db = solver.Phase(x_flat, solver.INT_VAR_DEFAULT, solver.INT_VALUE_DEFAULT) solver.NewSearch(db) num_solutions = 0 while solver.NextSolution(): for i in range (n): for j in range (n): print x[i,j].Value(), print print num_solutions + = 1 solver.EndSearch() print print "num_solutions:" , num_solutions print "failures:" , solver.Failures() print "branches:" , solver.Branches() print "WallTime:" , solver.WallTime() if __name__ = = '__main__' : main() |