1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | /******************************************************************************* * OscaR is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 2.1 of the License, or * (at your option) any later version. * * OscaR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License along with OscaR. * If not, see http://www.gnu.org/licenses/lgpl-3.0.en.html ******************************************************************************/ package oscar.examples.cp.hakank import oscar.cp.modeling. _ import oscar.cp.core. _ import scala.io.Source. _ import scala.math. _ /** * * """ * Killer sudoku (also killer su doku, sumdoku, sum doku, addoku, or * samunamupure) is a puzzle that combines elements of sudoku and kakuro. * Despite the name, the simpler killer sudokus can be easier to solve * than regular sudokus, depending on the solver's skill at mental arithmetic; * the hardest ones, however, can take hours to crack. * * ... * * The objective is to fill the grid with numbers from 1 to 9 in a way that * the following conditions are met: * * - Each row, column, and nonet contains each number exactly once. * - The sum of all numbers in a cage must match the small number printed * in its corner. * - No number appears more than once in a cage. (This is the standard rule * for killer sudokus, and implies that no cage can include more * than 9 cells.) * * In 'Killer X', an additional rule is that each of the long diagonals * contains each number once. * """ * * Here we solve the problem from the Wikipedia page, also shown here * * The output is: * 2 1 5 6 4 7 3 9 8 * 3 6 8 9 5 2 1 7 4 * 7 9 4 3 8 1 6 5 2 * 5 8 6 2 7 4 9 3 1 * 1 4 2 5 9 3 8 6 7 * 9 7 3 8 1 6 4 2 5 * 8 2 1 7 3 9 5 4 6 * 6 5 9 4 2 8 7 1 3 * 4 3 7 1 6 5 2 8 9 * * * @author Hakan Kjellerstrand hakank@gmail.com * */ object KillerSudoku { /** * Ensure that the sum of the segments * in cc == res * */ def calc(cp : CPSolver, cc : Array[Int], x : Array[Array[CPIntVar]], res : Int) { val len = (cc.length / 2 ).toInt // sum the numbers cp.add(sum( for {i <- 0 until len} yield x(cc(i* 2 )- 1 )(cc(i* 2 + 1 )- 1 )) == res) } def main(args : Array[String]) { val cp = CPSolver() // // data // // size of matrix val cell _ size = 3 val CELLS = 0 until cell _ size val n = cell _ size*cell _ size val RANGE = 0 until n // For a better view of the problem, see // hints // sum, the hints // Note: this is 1-based val problem = Array(Array( 3 , 1 , 1 , 1 , 2 ), Array( 15 , 1 , 3 , 1 , 4 , 1 , 5 ), Array( 22 , 1 , 6 , 2 , 5 , 2 , 6 , 3 , 5 ), Array( 4 , 1 , 7 , 2 , 7 ), Array( 16 , 1 , 8 , 2 , 8 ), Array( 15 , 1 , 9 , 2 , 9 , 3 , 9 , 4 , 9 ), Array( 25 , 2 , 1 , 2 , 2 , 3 , 1 , 3 , 2 ), Array( 17 , 2 , 3 , 2 , 4 ), Array( 9 , 3 , 3 , 3 , 4 , 4 , 4 ), Array( 8 , 3 , 6 , 4 , 6 , 5 , 6 ), Array( 20 , 3 , 7 , 3 , 8 , 4 , 7 ), Array( 6 , 4 , 1 , 5 , 1 ), Array( 14 , 4 , 2 , 4 , 3 ), Array( 17 , 4 , 5 , 5 , 5 , 6 , 5 ), Array( 17 , 4 , 8 , 5 , 7 , 5 , 8 ), Array( 13 , 5 , 2 , 5 , 3 , 6 , 2 ), Array( 20 , 5 , 4 , 6 , 4 , 7 , 4 ), Array( 12 , 5 , 9 , 6 , 9 ), Array( 27 , 6 , 1 , 7 , 1 , 8 , 1 , 9 , 1 ), Array( 6 , 6 , 3 , 7 , 2 , 7 , 3 ), Array( 20 , 6 , 6 , 7 , 6 , 7 , 7 ), Array( 6 , 6 , 7 , 6 , 8 ), Array( 10 , 7 , 5 , 8 , 4 , 8 , 5 , 9 , 4 ), Array( 14 , 7 , 8 , 7 , 9 , 8 , 8 , 8 , 9 ), Array( 8 , 8 , 2 , 9 , 2 ), Array( 16 , 8 , 3 , 9 , 3 ), Array( 15 , 8 , 6 , 8 , 7 ), Array( 13 , 9 , 5 , 9 , 6 , 9 , 7 ), Array( 17 , 9 , 8 , 9 , 9 )) val num _ p = problem.length // Number of segments println( "num_p: " + num _ p) // // Decision variables // val x = Array.fill(n,n)(CPIntVar( 0 to 9 )(cp)) val x _ flat = x.flatten // // constraints // var numSols = 0 cp.solve subjectTo { // rows and columns for (i <- RANGE) { cp.add(allDifferent( Array.tabulate(n)(j = > x(i)(j))), Strong) cp.add(allDifferent( Array.tabulate(n)(j = > x(j)(i))), Strong) } // blocks for (i <- CELLS; j <- CELLS) { cp.add(allDifferent( ( for { r <- i*cell _ size until i*cell _ size+cell _ size; c <- j*cell _ size until j*cell _ size+cell _ size } yield x(r)(c)).toArray), Strong) } for (i <- 0 until num _ p) { val segment = problem(i) // Remove the sum from the segment val s 2 = for (i<- 1 until segment.length) yield segment(i) // sum this segment calc(cp, s 2 , x, segment( 0 )) // all numbers in this segment must be distinct val len = segment.length / 2 cp.add( allDifferent( for (j <- 0 until len) yield x(s 2 (j * 2 ) - 1 )(s 2 (j * 2 + 1 ) - 1 ))) } } search { binaryFirstFail(x _ flat) } onSolution { for (i <- RANGE) { println(x(i).mkString( "" )) } println() numSols + = 1 } println(cp.start()) } } |