1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 | # Copyright 2010 Hakan Kjellerstrand hakank@gmail.com # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ n-queens problem in Google CP Solver. N queens problem. This version use NewSearch()/NextSolution() for looping through the solutions. This model was created by Hakan Kjellerstrand (hakank@gmail.com) Also see my other Google CP Solver models: http://www.hakank.org/google_or_tools/ """ import sys, string from constraint_solver import pywrapcp def main(n = 8 , num_sol = 0 , print_sol = 1 ): # Create the solver. solver = pywrapcp.Solver( 'n-queens' ) # # data # # n = 8 # size of board (n x n) print "n:" , n print "num_sol:" , num_sol print "print_sol:" , print_sol # declare variables q = [solver.IntVar( 0 ,n - 1 , 'x%i' % i) for i in range (n)] # # constraints # solver.Add(solver.AllDifferent(q, True )) for i in range (n): for j in range (i): solver.Add(q[i] ! = q[j]) solver.Add(q[i] + i ! = q[j] + j) solver.Add(q[i] - i ! = q[j] - j) # for i in range(n): # for j in range(i): # solver.Add(abs(q[i]-q[j]) != abs(i-j)) # symmetry breaking # solver.Add(q[0] == 0) # # solution and search # solution = solver.Assignment() solution.Add([q[i] for i in range (n)]) # db: DecisionBuilder # db = solver.Phase([q[i] for i in range(n)], # #solver.CHOOSE_FIRST_UNBOUND, # solver.CHOOSE_MIN_SIZE_LOWEST_MAX, # solver.ASSIGN_CENTER_VALUE) parameters = pywrapcp.DefaultPhaseParameters() # parameters.heuristic_num_failures_limit = 1000 parameters.heuristic_period = n * n * n # parameters.var_selection_schema = parameters.CHOOSE_MAX_SUM_IMPACT parameters.var_selection_schema = parameters.CHOOSE_MAX_AVERAGE_IMPACT # parameters.var_selection_schema = parameters.CHOOSE_MAX_VALUE_IMPACT # parameters.value_selection_schema = parameters.SELECT_MIN_IMPACT # parameters.value_selection_schema = parameters.SELECT_MAX_IMPACT # parameters.initialization_splits = 10 # parameters.initialization_splits = 20 # parameters.random_seed = 0 db = solver.DefaultPhase(q, parameters) solver.NewSearch(db) num_solutions = 0 while solver.NextSolution(): if print_sol: qval = [q[i].Value() for i in range (n)] print "q:" , qval for i in range (n): for j in range (n): if qval[i] = = j: print "Q" , else : print "_" , print print num_solutions + = 1 if num_sol > 0 and num_solutions > = num_sol: break solver.EndSearch() print print "num_solutions:" , num_solutions print "failures:" , solver.failures() print "branches:" , solver.branches() print "wall_time:" , solver.wall_time() n = 8 num_sol = 0 print_sol = 1 if __name__ = = '__main__' : if len (sys.argv) > 1 : n = int (sys.argv[ 1 ]) if len (sys.argv) > 2 : num_sol = int (sys.argv[ 2 ]) if len (sys.argv) > 3 : print_sol = int (sys.argv[ 3 ]) main(n, num_sol, print_sol) # print_sol = False # show_all = False # for n in range(1000,1001): # print # main(n, num_sol, print_sol) |