Download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Copyright 2010 Hakan Kjellerstrand hakank@gmail.com
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
 
"""
 
  n-queens problem in Google CP Solver.
 
  N queens problem.
 
  This version use NewSearch()/NextSolution() for looping through
  the solutions.
 
  This model was created by Hakan Kjellerstrand (hakank@gmail.com)
  Also see my other Google CP Solver models: http://www.hakank.org/google_or_tools/
"""
import sys, string
from constraint_solver import pywrapcp
 
 
def main(n=8, num_sol=0, print_sol=1):
    # Create the solver.
    solver = pywrapcp.Solver('n-queens')
 
    #
    # data
    #
    # n = 8 # size of board (n x n)
    print "n:", n
    print "num_sol:", num_sol
    print "print_sol:", print_sol
 
    # declare variables
    q = [solver.IntVar(0,n-1, 'x%i' % i) for i in range(n)]
 
    #
    # constraints
    #
    solver.Add(solver.AllDifferent(q,True))
    for i in range(n):
        for j in range(i):
            solver.Add(q[i] != q[j])
            solver.Add(q[i] + i != q[j] + j)
            solver.Add(q[i] - i != q[j] - j)
 
    # for i in range(n):
    #     for j in range(i):
    #         solver.Add(abs(q[i]-q[j]) != abs(i-j))
  
    # symmetry breaking
    # solver.Add(q[0] == 0)
     
 
    #
    # solution and search
    #
    solution = solver.Assignment()
    solution.Add([q[i] for i in range(n)])
 
 
    # db: DecisionBuilder
    # db = solver.Phase([q[i] for i in range(n)],
    #                   #solver.CHOOSE_FIRST_UNBOUND,
    #                   solver.CHOOSE_MIN_SIZE_LOWEST_MAX,
    #                   solver.ASSIGN_CENTER_VALUE)
 
    parameters = pywrapcp.DefaultPhaseParameters()
 
    # parameters.heuristic_num_failures_limit = 1000
     
    parameters.heuristic_period = n*n*n
 
    # parameters.var_selection_schema = parameters.CHOOSE_MAX_SUM_IMPACT
    parameters.var_selection_schema = parameters.CHOOSE_MAX_AVERAGE_IMPACT
    # parameters.var_selection_schema = parameters.CHOOSE_MAX_VALUE_IMPACT
     
    # parameters.value_selection_schema = parameters.SELECT_MIN_IMPACT
    # parameters.value_selection_schema = parameters.SELECT_MAX_IMPACT
     
    # parameters.initialization_splits = 10
    # parameters.initialization_splits = 20
 
     
    # parameters.random_seed = 0
 
 
    db = solver.DefaultPhase(q, parameters)
 
     
    solver.NewSearch(db)
    num_solutions = 0
    while solver.NextSolution():
        if print_sol:
            qval = [q[i].Value() for i in range(n)]
            print "q:", qval
            for i in range(n):
                for j in range(n):
                    if qval[i] == j:
                        print "Q",
                    else:
                        print "_",
                print
            print
        num_solutions += 1
        if num_sol > 0 and num_solutions >= num_sol:
            break
     
    solver.EndSearch()
     
    print
    print "num_solutions:", num_solutions
    print "failures:", solver.failures()
    print "branches:", solver.branches()
    print "wall_time:", solver.wall_time()
 
 
n = 8
num_sol = 0
print_sol = 1
if __name__ == '__main__':
    if len(sys.argv) > 1:
        n = int(sys.argv[1])
    if len(sys.argv) > 2:
        num_sol = int(sys.argv[2])      
    if len(sys.argv) > 3:
        print_sol = int(sys.argv[3])      
 
         
    main(n, num_sol, print_sol)
 
    # print_sol = False
    # show_all = False
    # for n in range(1000,1001):
    #     print
    #     main(n, num_sol, print_sol)