1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | /******************************************************************************* * OscaR is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 2.1 of the License, or * (at your option) any later version. * * OscaR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License along with OscaR. * If not, see http://www.gnu.org/licenses/lgpl-3.0.en.html ******************************************************************************/ package oscar.examples.cp.hakank import oscar.cp.modeling. _ import oscar.cp.core. _ import scala.io.Source. _ import scala.math. _ /* Set partition problem in Oscar. Problem formulation from """ This is a partition problem. Given the set S = {1, 2, ..., n}, it consists in finding two sets A and B such that: A U B = S, |A| = |B|, sum(A) = sum(B), sum_squares(A) = sum_squares(B) """ Note: This model uses a binary matrix to represent the sets. @author Hakan Kjellerstrand hakank@gmail.com */ object SetPartition { def main(args : Array[String]) { val cp = CPSolver() // // data // val n = if (args.length > 0 ) args( 0 ).toInt else 16 ; val num _ sets = if (args.length > 1 ) args( 1 ).toInt else 2 ; val NRANGE = 0 until n val SRANGE = 0 until num _ sets println( "n: " + n + " num_sets: " + num _ sets) // // variables // // The matrix val a = Array.fill(num _ sets,n)(CPIntVar( 0 to 1 )(cp)) // // constraints // var numSols = 0 cp.solve subjectTo { for (i <- SRANGE; j <- SRANGE if i! = j) { cp.add( sum( for {k <- NRANGE} yield a(i)(k)*a(j)(k)) == 0 ) } // ensure that all integers is in // (exactly) one partition cp.add( sum( for {i <- SRANGE j <- NRANGE} yield a(i)(j) ) == n ) for (i <- SRANGE; j <- SRANGE if i < j) { // same cardinality cp.add( sum( for {k <- NRANGE} yield a(i)(k) ) == sum( for {k <- NRANGE} yield a(j)(k) ) ) // same sum cp.add( sum( for {k <- NRANGE} yield a(i)(k)*k ) == sum( for {k <- NRANGE} yield a(j)(k)*k) ) // same sum squared cp.add( sum( for {k <- NRANGE} yield a(i)(k)*k*a(i)(k)*k ) == sum( for {k <- NRANGE} yield a(j)(k)*k*a(j)(k)*k) ) } // symmetry breaking for num_sets == 2 if (num _ sets == 2 ) { cp.add(a( 0 )( 0 ) == 1 ) } } search { binaryStatic(a.flatten.toSeq) } onSolution { println( "\nSolution:" ) var sums = 0 var sums _ squared = 0 for (i <- SRANGE) { for (j <- NRANGE if a(i)(j).value == 1 ) { print((j+ 1 ) + " " ) if (i == 0 ) { val v = (j+ 1 )*a(i)(j).value sums + = v sums _ squared + = v*v } } println() } println( "Sums: " + sums + " Sums squared: " + sums _ squared) numSols + = 1 } println(cp.start()) } } |