1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 | # Copyright 2010 Hakan Kjellerstrand hakank@gmail.com # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Langford's number problem in Google CP Solver. Langford's number problem (CSP lib problem 24) ''' Arrange 2 sets of positive integers 1..k to a sequence, such that, following the first occurence of an integer i, each subsequent occurrence of i, appears i+1 indices later than the last. For example, for k=4, a solution would be 41312432 ''' * John E. Miller: Langford's Problem http://www.lclark.edu/~miller/langford.html * Encyclopedia of Integer Sequences for the number of solutions for each k Also, see the following models: * MiniZinc: http://www.hakank.org/minizinc/langford2.mzn * Gecode/R: http://www.hakank.org/gecode_r/langford.rb * ECLiPSe: http://hakank.org/eclipse/langford.ecl * SICStus: http://hakank.org/sicstus/langford.pl This model was created by Hakan Kjellerstrand (hakank@gmail.com) Also see my other Google CP Solver models: http://www.hakank.org/google_or_tools/ """ import sys import string from constraint_solver import pywrapcp def main(k = 8 , num_sol = 0 ): # Create the solver. solver = pywrapcp.Solver( 'Langford' ) # # data # print "k:" , k p = range ( 2 * k) # # declare variables # position = [solver.IntVar( 0 , 2 * k - 1 , "position[%i]" % i) for i in p] solution = [solver.IntVar( 1 , k, "position[%i]" % i) for i in p] # # constraints # solver.Add(solver.AllDifferent(position)) for i in range ( 1 ,k + 1 ): solver.Add(position[i + k - 1 ] = = position[i - 1 ] + i + 1 ) solver.Add(solver.Element(solution, position[i - 1 ]) = = i) solver.Add(solver.Element(solution, position[k + i - 1 ]) = = i) # symmetry breaking solver.Add(solution[ 0 ] < solution[ 2 * k - 1 ]) # # search and result # db = solver.Phase(position, solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_MIN_VALUE) solver.NewSearch(db) num_solutions = 0 while solver.NextSolution(): print "solution:" , "," .join([ str (solution[i].Value()) for i in p]) num_solutions + = 1 if num_sol > 0 and num_solutions > = num_sol: break solver.EndSearch() print print "num_solutions:" , num_solutions print "failures:" , solver.Failures() print "branches:" , solver.Branches() print "WallTime:" , solver.WallTime() k = 8 num_sol = 0 if __name__ = = '__main__' : if len (sys.argv) > 1 : k = string.atoi(sys.argv[ 1 ]) if len (sys.argv) > 2 : num_sol = string.atoi(sys.argv[ 2 ]) main(k, num_sol) |