Download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Copyright 2010 Hakan Kjellerstrand hakank@gmail.com
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
 
"""
 
  Langford's number problem in Google CP Solver.
 
  Langford's number problem (CSP lib problem 24)
  '''
  Arrange 2 sets of positive integers 1..k to a sequence,
  such that, following the first occurence of an integer i,
  each subsequent occurrence of i, appears i+1 indices later
  than the last.
  For example, for k=4, a solution would be 41312432
  '''
 
  * John E. Miller: Langford's Problem
    http://www.lclark.edu/~miller/langford.html
 
  * Encyclopedia of Integer Sequences for the number of solutions for each k
 
 
  Also, see the following models:
 
 
  This model was created by Hakan Kjellerstrand (hakank@gmail.com)
  Also see my other Google CP Solver models: http://www.hakank.org/google_or_tools/
"""
 
import sys
import string
 
from constraint_solver import pywrapcp
 
 
def main(k=8, num_sol=0):
 
    # Create the solver.
    solver = pywrapcp.Solver('Langford')
 
    #
    # data
    #
    print "k:", k
    p = range(2*k)
 
    #
    # declare variables
    #
    position = [solver.IntVar(0, 2*k-1, "position[%i]" % i) for i in p]
    solution = [solver.IntVar(1, k, "position[%i]" % i) for i in p]
 
    #
    # constraints
    #
    solver.Add(solver.AllDifferent(position))
 
    for i in range(1,k+1):
        solver.Add(position[i+k-1] == position[i-1] + i+1)
        solver.Add(solver.Element(solution, position[i-1]) == i)
        solver.Add(solver.Element(solution, position[k+i-1]) == i)
 
    # symmetry breaking
    solver.Add(solution[0] < solution[2*k-1])
 
 
    #
    # search and result
    #
    db = solver.Phase(position,
                 solver.CHOOSE_FIRST_UNBOUND,
                 solver.ASSIGN_MIN_VALUE)
 
    solver.NewSearch(db)
    num_solutions = 0
    while solver.NextSolution():
        print "solution:", ",".join([str(solution[i].Value()) for i in p])
        num_solutions += 1
        if num_sol > 0 and num_solutions >= num_sol:
            break
 
    solver.EndSearch()
 
    print
    print "num_solutions:", num_solutions
    print "failures:", solver.Failures()
    print "branches:", solver.Branches()
    print "WallTime:", solver.WallTime()
 
k = 8
num_sol = 0
if __name__ == '__main__':
    if len(sys.argv) > 1:
        k = string.atoi(sys.argv[1])
    if len(sys.argv) > 2:
        num_sol = string.atoi(sys.argv[2])
 
    main(k, num_sol)