1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 | /* Langford's number problem in B-Prolog. Langford's number problem (CSP lib problem 24) "" " Arrange 2 sets of positive integers 1..k to a sequence, such that, following the first occurence of an integer i, each subsequent occurrence of i, appears i+1 indices later than the last . For example, for k=4, a solution would be 41312432 "" " * John E. Miller: Langford's Problem http://www.lclark.edu/~miller/langford.html * Encyclopedia of Integer Sequences for the number of solutions for each k Note: For k=4 there are two different solutions: solution:[4,1,3,1,2,4,3,2] position:[2,5,3,1,4,8,7,6] and solution:[2,3,4,2,1,3,1,4] position:[5,1,2,3,7,4,6,8] Which this symmetry breaking Solution[1] #< Solution[K2], then just the second solution is shown. Model created by Hakan Kjellerstrand, hakank @gmail .com */ % Licenced under CC-BY-4.0 : http://creativecommons.org/licenses/by/4.0/ % % Find all solutions for K=2..8. % go :- Selection = ff, Choice = down, foreach (K in 2..8, [L,Len], ( writeln(k:K), time (findall([K,Backtracks,Solution,Position], langford(K,Solution,Position,Selection,Choice,Backtracks), L)), length (L,Len), foreach (LL in L, [_K, Backtracks,Solution,Position], ( [K,Backtracks,Solution,Position] = LL, writeln(solution:Solution), writeln(position:Position), writeln(backtracks:Backtracks), nl ) ), writeln(len:Len), nl ) ). % % For a specific K, check all possible variants of Selection and % Choice methods. % This was originally to check which heuristics that was the best. % However, all heuristics give 0 backtracks and about 0.43 seconds. % go2 :- K = 8, selection(Selections), choice(Choices), writeln(k:K), foreach (Selection in Selections, Choice in Choices, [Backtracks,Solution,Position,L,Len], ( writeln([selection:Selection, choice:Choice]), time (findall(Backtracks, langford(K,Solution,Position,Selection,Choice,Backtracks), L)), length (L,Len), format ( 'All backtracks: ~q\n' , [L]), writeln(len:Len), nl, flush_output ) ). % % Just get the first ( if any) solutions for K in 2..12 % go3 :- foreach (K in 2..12, [Solution,Position,Backtracks], ( writeln(k:K), time (langford(K,Solution,Position,ff,down,Backtracks)) -> writeln(solution:Solution), writeln(position:Position), writeln(backtracks:Backtracks), nl ; writeln( 'No solution' ), nl, true ) ). langford(K, Solution, Position) :- langford(K, Solution, ff, down, Position,_Backtracks). langford(K, Solution, Position,Selection,Choice,Backtracks) :- statistics(backtracks,Backtracks1), K2 is 2*K, length (Position, K2), Position :: 1..K2, length (Solution,K2), Solution :: 1..K, alldifferent(Position), % symmetry breaking: Solution[1] #< Solution[K2], % Solution[1] #> Solution[K2], foreach (I in 1..K, [IK,PositionI,PositionIK,SolutionPositionI,SolutionPositionIK], ( IK is I+K, nth1(IK, Position, PositionIK), nth1(I, Position, PositionI), % I1 is I+1, PositionIK #= PositionI + I+1, nth1(PositionI,Solution,SolutionPositionI), SolutionPositionI #= I, nth1(PositionIK,Solution,SolutionPositionIK), SolutionPositionIK #= I ) ), term_variables([Position,Solution], Vars), labeling([Selection,Choice], Vars), statistics(backtracks,Backtracks2), Backtracks is Backtracks2 - Backtracks1. % Variable selection selection([backward,constr,degree,ff,ffc,forward,inout,leftmost,max,min]). % Value selection choice([down,updown, split ,reverse_split]). |