Download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
package org.jcp.jsr331.hakan;
 
 
/**
 *
 * All interval problem in JSR-331.
 *
 * CSPLib problem number 7
 * http://www.cs.st-andrews.ac.uk/~ianm/CSPLib/prob/prob007/index.html
 * '''
 * Given the twelve standard pitch-classes (c, c , d, ...), represented by
 * numbers 0,1,...,11, find a series in which each pitch-class occurs exactly
 * once and in which the musical intervals between neighbouring notes cover
 * the full set of intervals from the minor second (1 semitone) to the major
 * seventh (11 semitones). That is, for each of the intervals, there is a
 * pair of neigbhouring pitch-classes in the series, between which this
 * interval appears. The problem of finding such a series can be easily
 * formulated as an instance of a more general arithmetic problem on Z_n,
 * the set of integer residues modulo n. Given n in N, find a vector
 * s = (s_1, ..., s_n), such that (i) s is a permutation of
 * Z_n = {0,1,...,n-1}; and (ii) the interval vector
 * v = (|s_2-s_1|, |s_3-s_2|, ... |s_n-s_{n-1}|) is a permutation of
 * Z_n-{0} = {1,2,...,n-1}. A vector v satisfying these conditions is
 * called an all-interval series of size n; the problem of finding such
 * a series is the all-interval series problem of size n. We may also be
 * interested in finding all possible series of a given size.
 * '''
 *
 * Compare with the following models:
 *
 * Model created by Hakan Kjellerstrand (hakank@gmail.com)
 *
 */
 
// Licenced under CC-BY-4.0 : http://creativecommons.org/licenses/by/4.0/
 
import javax.constraints.*;
 
import java.io.*;
import java.util.*;
import java.text.*;
 
public class AllInterval {
 
    int n;
    Var[] x;
  Problem p = ProblemFactory.newProblem("All Interval");
 
    // main
    public static void main(String[] args) {
 
        int n_in = 10;
 
        if (args.length >= 1) {
            n_in = Integer.parseInt(args[0]);
        }
 
        System.out.println("\nn: " + n_in + "\n");
        AllInterval allInterval = new AllInterval();
        allInterval.define(n_in);
        allInterval.solve();
 
    }
 
 
    // Problem definition   
    public void define(int n_in) {
 
        n = n_in;
        x = p.variableArray("x", 1, n, n);
        Var[] diffs = p.variableArray("diffs", 1, n-1, n-1);
        /*
        Var[] diffs = new Var[n-1];
        for(int i = 0; i < n-1; i++) {
            diffs[i] = new javax.constraints.impl.Var(x[0].getProblem(), "diffs-"+i, 1, n-1);
        }
        */
 
        p.postAllDifferent(x);
        p.postAllDifferent(diffs);
 
        for(int k = 0; k < n-1; k++) {
            p.post(diffs[k],"=", x[k+1].minus(x[k]).abs());
        }
 
        // symmetry breaking
        p.post(x[0], "<", x[n-1]);
        p.post(diffs[0], "<", diffs[1]);
 
    }
     
     
    public void solve() {
        //
        // search
        //
        Solver solver = p.getSolver();
        SearchStrategy strategy = solver.getSearchStrategy();
        strategy.setVars(x);
 
        // strategy.setVarSelectorType(VarSelectorType.INPUT_ORDER);
        // strategy.setVarSelectorType(VarSelectorType.MIN_VALUE);
        // strategy.setVarSelectorType(VarSelectorType.MAX_VALUE);
        // strategy.setVarSelectorType(VarSelectorType.MIN_DOMAIN);
        // strategy.setVarSelectorType(VarSelectorType.MIN_DOMAIN_MIN_VALUE);
        // strategy.setVarSelectorType(VarSelectorType.MIN_DOMAIN_RANDOM);
        // strategy.setVarSelectorType(VarSelectorType.RANDOM);
        // strategy.setVarSelectorType(VarSelectorType.MIN_DOMAIN_MAX_DEGREE);
        // strategy.setVarSelectorType(VarSelectorType.MIN_DOMAIN_OVER_DEGREE);
        strategy.setVarSelectorType(VarSelectorType.MIN_DOMAIN_OVER_WEIGHTED_DEGREE);
        // strategy.setVarSelectorType(VarSelectorType.MAX_WEIGHTED_DEGREE);
        // strategy.setVarSelectorType(VarSelectorType.MAX_IMPACT);
        // strategy.setVarSelectorType(VarSelectorType.MAX_DEGREE);
        // strategy.setVarSelectorType(VarSelectorType.MAX_REGRET);
         
         
         
         
        // strategy.setValueSelectorType(ValueSelectorType.IN_DOMAIN);
        // strategy.setValueSelectorType(ValueSelectorType.MIN);
        // strategy.setValueSelectorType(ValueSelectorType.MAX);
        strategy.setValueSelectorType(ValueSelectorType.MIN_MAX_ALTERNATE);
        // strategy.setValueSelectorType(ValueSelectorType.MIDDLE);
        // strategy.setValueSelectorType(ValueSelectorType.MEDIAN);
        // strategy.setValueSelectorType(ValueSelectorType.RANDOM);
        // strategy.setValueSelectorType(ValueSelectorType.MIN_IMPACT);
        // strategy.setValueSelectorType(ValueSelectorType.CUSTOM);
         
        //
        // tracing
        //
        // solver.addSearchStrategy(new StrategyLogVariables(solver));
        // solver.traceExecution(true);
 
        //
        // solve
        //       
        int num_sols = 0;
        SolutionIterator iter = solver.solutionIterator();
        while (iter.hasNext()) {
            num_sols++;
            Solution s = iter.next();
 
            // s.log();
            for(int i = 0; i < n; i++) {
                System.out.print(s.getValue("x-"+i) + " ");
            }
            System.out.println();
 
        }
 
        System.out.println("\nIt was " + num_sols + " solutions.\n");
 
        solver.logStats();
    }
 
}