Download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
/*******************************************************************************
 * OscaR is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation, either version 2.1 of the License, or
 * (at your option) any later version.
 *  
 * OscaR is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License  for more details.
 *  
 * You should have received a copy of the GNU Lesser General Public License along with OscaR.
 ******************************************************************************/
package oscar.examples.cp.hakank
 
import oscar.cp.modeling._
 
import oscar.cp.core._
import scala.io.Source._
import scala.math._
import Array._
 
 
/*
 
  Golomb Golomb ruler in Oscar.
 
  CSPLib problem 6
  http://www.cs.st-andrews.ac.uk/~ianm/CSPLib/prob/prob006/index.html
  """
  These problems are said to have many practical applications including
  sensor placements for x-ray crystallography and radio astronomy. A
  Golomb ruler may be defined as a set of m integers
  0 = a_1 < a_2 < ... < a_m such that the m(m-1)/2 differences
  a_j - a_i, 1 <= i < j <= m are distinct. Such a ruler is said to contain
  m marks and is of length a_m. The objective is to find optimal (minimum
  length) or near optimal rulers.
 
  Note that a symmetry can be removed by adding the constraint that
  a_2 - a_1 < a_m - a_{m-1}, the first difference is less than the last.
  """
 
  Also see:
 
 
  @author Hakan Kjellerstrand hakank@gmail.com
  
*/
object GolombRuler {
 
  def increasing(cp: CPSolver, y: Array[CPIntVar]) = {
    for (i <- 1 until y.length) {
      cp.add(y(i-1) <= y(i), Strong)
    }
  }
 
  def main(args: Array[String]) {
     
    val cp = CPSolver()
 
    //
    // data
    //
    var m = 8
 
    if (args.length > 0) {
      m = args(0).toInt
    }
 
    val n = m*m
 
    //
    // variables
    //
    val mark = Array.fill(m)(CPIntVar(0 to n)(cp))
    val differences = for{i <- 0 until m; j <- i+1 until m} yield mark(j)-mark(i)
                         
    //
    // constraints
    //
    var numSols = 0
    cp.minimize(mark(m-1)) subjectTo {
 
      cp.add(allDifferent(mark), Strong)
      cp.add(allDifferent(differences), Strong)
 
      increasing(cp, mark)
 
      // symmetry breaking
      cp.add(mark(0) == 0)
      cp.add(mark(1)-mark(0) < mark(m-1) - mark(m-2))
 
      // ensure positive differences
      // (Cred to Pierre Schaus.)
      differences.foreach(d => cp.add(d > 0))
 
     } search {
  
       binaryStatic(mark) // 756 backtracks for m=8
      
     } onSolution {
        
       println("\nSolution:")
       print("mark: " + mark.mkString(""))
       println("\ndifferences: " + differences.mkString(""))
       println()
 
       numSols += 1
 
   }
 
   println(cp.start())
 
  }
 
}