Download
from Numberjack import *
# Magic Square --- CSPLib prob019
# A Magic Square of order N is an N x N matrix of values from 1 to N^2, where
# each run, column, and diagonal sum to the same value. This value can be
# calculated as N * (N^2 + 1) / 2.
def get_model(N):
sum_val = N * (N * N + 1) / 2 # This is what all the columns, rows and diagonals must add up tp
square = Matrix(N, N, 1, N * N)
model = Model(
AllDiff(square),
[Sum(row) == sum_val for row in square.row],
[Sum(col) == sum_val for col in square.col],
Sum([square[a, a] for a in range(N)]) == sum_val,
Sum([square[a, N - a - 1] for a in range(N)]) == sum_val
)
return square, model
def solve(param):
square, model = get_model(param['N'])
solver = model.load(param['solver'])
solver.setVerbosity(param['verbose'])
solver.setHeuristic(param['var'], param['val'], param['rand'])
solver.setTimeLimit(param['cutoff'])
if param['restart'] == 'yes':
solver.solveAndRestart()
else:
solver.solve()
out = ''
if solver.is_sat():
out = str(square)
out += ('\nNodes: ' + str(solver.getNodes()))
return out
default = {'solver': 'Mistral', 'N': 4, 'var': 'MinDomain',
'val': 'RandomMinMax', 'restart': 'yes', 'rand': 2, 'verbose': 0, 'cutoff': 10}
if __name__ == '__main__':
param = input(default)
print solve(param)