Download
/** 
 * Supply chain coordination problem
 * OPL model for the root agent.
 * The root receives demand for products from customers
 * and agrees component delivery schedules from supplier agents.
 */


/**
 * MODEL INPUT PARAMETERS
 */


// Time horizon
int numPeriods = ...; 
range horizon 1..numPeriods;

// Number of product configurations
int numProducts = ...; 
range products 1..numProducts;

// Number of components
int numComponents = ...; 
range components 1..numComponents;

// Maximum number of orders to consider for each component
int numOrders[components]  = ...;

// Bill Of Materials
int bom[products,components] = ...; 

// The batch size of a component in a particularly delivery
int batchSize[components] = ...;

// Delivery cost for an order of components
int deliveryCost[components] = ...;

// The lead time/delivery time for a particular product
// I.e. the number of periods between an order being shipped 
// and the order arriving at the customer
int leadtime[products] = ...;
   
// Number of processing cycles for each configuration
int cycles[products]= ...; 

// Number of cycles required to setup a configuration
int setupCycles[products] = ...;

// Factory capacity
int capacity[horizon] = ...;  

// Demand for products
int demand[horizon,products] = ...;

// Cost for not meeting an order for product i
int penaltyCost[products] = ...; 

// Starting product inventory
int openingProductInventory[products] = ...;

// Starting component inventory
int openingComponentInventory[components] = ...;

// Holding costs
int productHoldingCost[products] = ...;
int componentHoldingCost[components] = ...;

// Setup costs
int setupCosts[products] = ...;

// Constants
int maxManufacture = max(t in horizon) capacity[t];
int maxDelivery = max(t in horizon, p in products) demand[t,p];
int maxOrders = max(c in components) maxNumOrders[c];


/**
 * PUBLIC VARIABLES
 * (variables constrained with other agents)
 */


// The number of orders for a each component to be delivered in each period.
var int componentDeliverySchedule[components,horizon] in 0..maxOrders;



/**
 * PRIVATE VARIABLES
 * (variables not constrained with other agents)
 */

// 0/1 variable indicating whether or not an order is made for a component in a particular period
var int isorder[horizon,components]  in 0..1; 

// 0/1 variable indicating whether or not a product will be built in a particular period
var int isbuilt[horizon,products]  in 0..1; 

// The number of a product built in a particular period
var int manufacture[horizon,products] in 0..maxManufacture; 



/**
 * AUXILIARY VARIABLES
 * (additional variables used to simplify the model specification)
 */


// Expected inventory arriving for each component in the time horizon
var float+ componentArrivals[horizon,components]; 

// Remaining product inventory after each period
var float+ productInventory[0..numPeriods,products]; 

// Remaining component inventory after each period
var float+ componentInventory[0..numPeriods,components]; 

// The quantity of product delivered in each period
var int deliveryQuantity[horizon, products] in 0..maxDelivery; 

// Components needed on a particular day to produce all products being manufactured
var float+ componentsUsed[horizon, components]; 


minimize

   // Total cost
   sum (t in horizon, p in products) (
      (productHoldingCost[p]*productInventory[t,p]) +
      (isbuilt[t,p]*setupCosts[p]) + 
      ((demand[t,p]-deliveryQuantity[t,p])*penaltyCost[p])
                                  ) +   
   sum (t in horizon, c in components) (
      (componentHoldingCost[c]*componentInventory[t,c]) +
      (isorder[t,c] * deliveryCost[c])
                      )

subject to
{
   
   
   // Opening product inventory
   forall(p in products) productInventory[0,p]=openingProductInventory[p];
  

   // Opening component inventory
   forall(c in components) componentInventory[0,c]=openingComponentInventory[c];


   // Calculate the component arrivals
   forall(t in horizon, c in components) componentArrivals[t,c] = batchSize[c] * componentDeliverySchedule[c,t];

   // The sum of the orders for any component should not be greater 
   // than the maximum number of orders required   
   forall(c in components) sum(t in horizon) componentDeliverySchedule[c,t] <= numOrders[c];
   
   // Set the isorder variable correctly 
   forall(t in horizon, c in components) maxNumComponentOrders[c] * isorder[t,c] >= componentDeliverySchedule[c,t];
    
   // Set the isbuilt variable correctly 
   // - should be 1 if any of that product is built on that day
   forall(t in horizon, p in products) maxManufacture * isbuilt[t,p] >= manufacture[t,p];
   

   // We can never deliver more than there is demand for
   forall(p in products) forall (t in 1..numPeriods-leadtime[p]) deliveryQuantity[t,p] <= demand[t+leadtime[p],p];
   forall(p in products) forall (t in [numPeriods-leadtime[p]+1..numPeriods]) deliveryQuantity[t,p] <= 0;
   

   // Capacity constraint for manufacturing decision
   // The factory's capacity for each day cannot be exceeded
   forall(t in horizon) sum(p in products) (manufacture[t,p]*cycles[p] + isbuilt[t,p]*setupCycles[p]) <= capacity[t];
   

   // The number of components needed is calculated by multiplying manufacturing decision by BOM
   forall(t in horizon, c in components) componentsUsed[t,c] = sum(p in products) manufacture[t,p]*bom[p,c];
   
      
   // Calculate the expected excess product inventory of each period
   forall(t in horizon, p in products) productInventory[t,p] = productInventory[t-1,p] + manufacture[t,p] - deliveryQuantity[t,p];     

   
   // Calculate the expected excess component inventory of each period
   forall(t in horizon, c in components) componentInventory[t,c] = componentInventory[t-1,c] + componentArrivals[t,c] - componentsUsed[t,c];   

};