Download
%
% Nonoram solver using regular and is written in all-MiniZinc.
%
% This version uses the regular constraint with the following features:
%
% * Compared to http://www.hakank.org/nonogram_regular.mzn
% It calculated all the finite states given a Nonogram pattern,
% instead of relying on an external program for doing this.
%
% * Compared to http://www.hakank.org/nonogram_create_automaton.mzn
% It calculates the states as par int (not var int), which
% makes it possible to use some optimal regular constraints,
% for example the one in Gecode/FlatZinc.
%
% Warning: the calculation of the states is quite ugly.
%
%
% This MiniZinc model was created by Hakan Kjellerstrand, hakank@bonetmail.com
% See also my MiniZinc page: http://www.hakank.org/minizinc
%
% Licenced under CC-BY-4.0 : http://creativecommons.org/licenses/by/4.0/
include "globals.mzn";
int: rows;
int: row_rule_len;
array[1..rows, 1..row_rule_len] of int: row_rules;
int: cols;
int: col_rule_len;
array[1..cols, 1..col_rule_len] of int: col_rules;
array[1..rows, 1..cols] of var 1..2: x;
solve :: int_search(
[x[i,j] | j in 1..cols, i in 1..rows],
first_fail,
indomain_min,
complete)
satisfy;
%
% The approach is rather simple:
% - zero_positions is a set of the positions in the state table where the
% state 0 should be, which also correspond to the state of the pattern "0"
% - when this have been identified everything else comes to rest
%
% On the other hand, the calculation of the states is hairy, very hairy.
%
predicate make_automaton(array[int] of var int: x, array[int] of int: pattern) =
let {
int: n = length(pattern),
% fix for "zero clues"
int: len = max(length([pattern[i] | i in 1..n where pattern[i] > 0]) + sum(pattern),1),
int: leading_zeros = sum(i in 1..n) (bool2int(pattern[i] = 0)),
set of int: zero_positions = {sum(j in 1..i) (pattern[j]+1) -leading_zeros | i in 1..n where pattern[i] > 0},
array[1..2*len] of 0..len*2: states =
if (length([pattern[i] | i in 1..n where pattern[i] > 0]) + sum(pattern)) = 0 then
[1,1] % fix for "zero clues"
else
[1, 2] ++
[
if i div 2 in zero_positions then
if i mod 2 = 0 then
0
else
(i div 2) + 1
endif
elseif (i-1) div 2 in zero_positions then
if i mod 2 = 0 then
(i div 2)+1
else
(i div 2)+2
endif
else
if not( (((i-1) div 2) - 1) in zero_positions) then
if i mod 2 = 0 then
(i div 2) + 1
else
if (i div 2) + 1 in zero_positions then
(i div 2) + 2
else
0
endif
endif
else
if i mod 2 = 0 then
(i div 2) + 1
else
if not((i div 2) + 1 in zero_positions) then
0
else
(i div 2) + 2
endif
endif
endif
endif
| i in 3..2*(len-1)]
++
[len, 0]
endif
}
in
regular(
x,
len,
2,
array2d(1..len, 1..2, states),
1,
{len}) % :: domain
;
constraint
forall(j in 1..cols) (
make_automaton([x[i,j] | i in 1..rows], [col_rules[j,k] | k in 1..col_rule_len])
)
/\
forall(i in 1..rows) (
make_automaton([x[i,j] | j in 1..cols], [row_rules[i,k] | k in 1..row_rule_len])
)
;
output
[
if j = 1 then "\n" else "" endif ++
if fix(x[i,j]) = 1 then " " else "#" endif
| i in 1..rows, j in 1..cols
]
++
[
"\n"
];