Download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
%
% Scheduling a Rehearsal in MiniZinc.
%
% From Barbara M. Smith:
% "Constraint Programming in Practice: Scheduling a Rehearsal"
% http://www.dcs.st-and.ac.uk/~apes/reports/apes-67-2003.pdf
% """
% A concert is to consist of nine pieces of music of different durations
% each involving a different combination of the five members of the orchestra.
% Players can arrive at rehearsals immediately before the first piece in which
% they are involved and depart immediately after the last piece in which
% they are involved. The problem is to devise an order in which the pieces
% can be rehearsed so as to minimize the total time that players are waiting
% to play, i.e. the total time when players are present but not currently
% playing. In the table below, 1 means that the player is required for
% the corresponding piece, 0 otherwise. The duration (i.e. rehearsal time)
% is in some unspecified time units.
%
%    Piece       1    2   3    4    5  6    7   8    9
%    Player 1    1    1   0    1    0  1    1   0    1
%    Player 2    1    1   0    1    1  1    0   1    0
%    Player 3    1    1   0    0    0  0    1   1    0
%    Player 4    1    0   0    0    1  1    0   0    1
%    Player 5    0    0   1    0    1  1    1   1    0
%    Duration    2    4   1    3    3  2    5   7    6
%
% For example, if the nine pieces were rehearsed in numerical order as
% given above, then the total waiting time would be:
%       Player 1: 1+3+7=11
%       Player 2: 1+5=6
%       Player 3: 1+3+3+2=9
%       Player 4: 4+1+3+5+7=20
%       Player 5: 3
% giving a total of 49 units. The optimal sequence, as we shall see,
% is much better than this.
%
% ...
%
% The minimum waiting time for the rehearsal problem is 17 time units, and
% an optimal sequence is 3, 8, 2, 7, 1, 6, 5, 4, 9.
%
% """
 
%
% The data above is in
%
 
% Here are all optimal sequences for Barbara M. Smith's problem
% (total_waiting_time: 17)
%
% order: [9, 4, 6, 5, 1, 7, 2, 8, 3]
% waiting_time: [3, 5, 0, 3, 6]
% total_waiting_time: 17
% ----------
% order: [9, 4, 6, 5, 1, 2, 7, 8, 3]
% waiting_time: [3, 5, 0, 3, 6]
% total_waiting_time: 17
% ----------
% order: [9, 4, 5, 6, 1, 7, 2, 8, 3]
% waiting_time: [3, 5, 0, 3, 6]
% total_waiting_time: 17
% ----------
% order: [9, 4, 5, 6, 1, 2, 7, 8, 3]
% waiting_time: [3, 5, 0, 3, 6]
% total_waiting_time: 17
% ----------
% order: [3, 8, 7, 2, 1, 6, 5, 4, 9]
% waiting_time: [3, 5, 0, 3, 6]
% total_waiting_time: 17
% ----------
% order: [3, 8, 7, 2, 1, 5, 6, 4, 9]
% waiting_time: [3, 5, 0, 3, 6]
% total_waiting_time: 17
% ----------
% order: [3, 8, 2, 7, 1, 6, 5, 4, 9]
% waiting_time: [3, 5, 0, 3, 6]
% total_waiting_time: 17
% ----------
% order: [3, 8, 2, 7, 1, 5, 6, 4, 9]
% waiting_time: [3, 5, 0, 3, 6]
% total_waiting_time: 17
% ----------
%
% Note that all waiting times are the same for
% all sequences, i.e. player 1 always wait 3 units, etc.
%
% With symmetry breaking rule that order[1] < order[num_pieces]
% there are 4 solutions where piece 2 and 7 can change place and
% 5 and 6 can change place.
%
 
%
% This MiniZinc model was created by Hakan Kjellerstrand, hakank@gmail.com
% See also my MiniZinc page: http://www.hakank.org/minizinc
%
 
% Licenced under CC-BY-4.0 : http://creativecommons.org/licenses/by/4.0/
 
include "globals.mzn";
 
 
int: num_pieces;
int: num_players;
array[1..num_pieces] of int: duration;
array[1..num_players, 1..num_pieces] of 0..1: rehearsal;
 
 
%
% Decision variables
%
array[1..num_pieces] of var 1..num_pieces: rehearsal_order;
array[1..num_players] of var 0..sum(duration): waiting_time; % waiting time for players
array[1..num_players] of var 1..num_pieces: p_from; % first rehearsal
array[1..num_players] of var 1..num_pieces: p_to;   % last rehearsal
var 0..sum(duration): total_waiting_time = sum(waiting_time); % objective
 
solve :: int_search(
         rehearsal_order % ++ waiting_time% ++ p_from ++ p_to ++ [total_waiting_time]
         ,
         first_fail, % occurrence, % max_regret, % first_fail,
         indomain_max, % indomain_max,
         complete)
     minimize total_waiting_time;
     % satisfy;
 
% solve :: labelling_ff minimize total_waiting_time;
 
constraint
  all_different(rehearsal_order) :: domain
  /\
 
  % This solution is my own without glancing at Smith's models...
  forall(p in 1..num_players) (
     % This versions is much faster than using exists (see below)
     % fix the range from..to, i.e. don't count all that start with 0
     % or ends with 0.
     % This means that we collect the rehearsals with many 0 at the ends
     %
     p_from[p] < p_to[p]
     /\
     % skipping rehearsal at start (don't come yet)
     forall(i in 1..num_pieces) (
        i < p_from[p] -> (rehearsal[p, rehearsal_order[i]] = 0)
     )
     /\
     % skipping rehearsal at end (go home after last rehearsal)
     forall(i in 1..num_pieces) (
        i > p_to[p] -> (rehearsal[p, rehearsal_order[i]] = 0)
     )
     /\ % and now: count the waiting time for from..to
     waiting_time[p] =
         sum(i in 1..num_pieces) (
              duration[rehearsal_order[i]] * bool2int(
                                             i >= p_from[p] /\ i <= p_to[p]
                                             /\
                                             rehearsal[p,rehearsal_order[i]] = 0
                                )
     )
 
%      % alternative solution with exists.
%      %  More elegant (= declarative) in my book but slower.
%      exists(from, to in 1..num_pieces) (
%         % skipping rehearsal at start (don't come yet)
%         forall(i in 1..from-1) (
%            rehearsal[p, rehearsal_order[i]] = 0
%         )
%         /\
%         % skipping rehearsal at end (go home after last rehearsal)
%         forall(i in to+1..num_pieces) (
%            rehearsal[p, rehearsal_order[i]] = 0
%         )
%         /\ % and now: count the waiting time for from..to
%         waiting_time[p] =
%             sum(i in from..to) (
%                  duration[rehearsal_order[i]]*
%                                  bool2int(
%                                       rehearsal[p,rehearsal_order[i]] = 0
%                                   )
%          )
%      )
 
 
  )
 
  /\ % symmetry breaking
  rehearsal_order[1] < rehearsal_order[num_pieces]
 
  % for all solutions
  % /\ total_waiting_time = 17
;
 
 
%
% data
%
%
% This is the problem from Barbara M. Smith's Rehearsal paper cited above:
% (see rehearsal_smith.dta)
% num_pieces = 9;
% num_players = 5;
% duration = [2, 4, 1, 3, 3, 2, 5, 7, 6];
% rehearsal = array2d(1..num_players, 1..num_pieces,
%     [
%      1,1,0,1,0,1,1,0,1,
%      1,1,0,1,1,1,0,1,0,
%      1,1,0,0,0,0,1,1,0,
%      1,0,0,0,1,1,0,0,1,
%      0,0,1,0,1,1,1,1,0
%   ]);
 
%
% This is the problem from the Choco v 2.1 example
% sample.scheduling.Rehearsal, the one defined in main() .
% (see rehearsal_choco.dta)
% num_pieces = 5;
% num_players = 3;
% duration = [4,6,3,5,7];
% rehearsal =  array2d(1..num_players, 1..num_pieces,
%         [
%         1,1,0,1,0,
%         0,1,1,0,1,
%         1,1,0,1,1  
%   ]);
 
 
output[
  "order: " , show(rehearsal_order), "\n",
  "waiting_time: ", show(waiting_time), "\n",
  "total_waiting_time: " , show(total_waiting_time), "\n",
] ++
[
  if j = 1 then "\n" else " " endif ++
    show(rehearsal[p, rehearsal_order[j]]) ++ " "
  | p in 1..num_players, j in 1..num_pieces,
] ++
["\n"]
;