Download
include "globals.mzn";
int: X;
int: Y;
int: maxlen;
array [1..Y,1..maxlen] of int: rows;
array [1..X,1..maxlen] of int: cols;
array[1..2, 1..2, 1..2] of 0..1: nonmul =
array3d(1..2, 1..2, 1..2,
[0, 0, 1, 1,
1, 0, 0, 1]
);
array[1..2, 1..2, 1..2] of 0..1: nonadd =
array3d(1..2, 1..2, 1..2,
[0, 0, 0, 1,
1, 0, 0, 1]
);
% variables
%
array[1..Y, 1..X] of var 1..2: A;
% All variables in a region must be different
% Ordering to ensure each variable is handled exactly once
predicate nonogram_row(
array[1..Y, 1..X] of var 1..2: A,
array[int] of 0..1: cons,
int: row) =
nonogram([A[row, v] | v in 1..X], cons);
predicate nonogram_col(
array[1..Y, 1..X] of var 1..2: A,
array[int] of 0..1: cons,
int: col) =
nonogram([A[v,col] | v in 1..Y], cons);
predicate nonogram(array[int] of var 1..2: A, array [int] of int: cons) =
let {
int: n = if cons[1] = 0 then 0 else max(index_set(cons)) endif,
array [1..n + 1, 1..2] of int: consarr =
if cons[1] = 0 then [|1, 0|]
else array2d(1..n + 1, 1..2,
[1, 2] ++
[ i * nonmul[cons[i - 1] + 1, cons[i] + 1, s] +
nonadd[cons[i - 1] + 1, cons[i] + 1, s]
| i in 2..n, s in 1..2
] ++
[n+1,0]
)
endif
} in (
regular(A, n + 1, 2, consarr, 1, {n + 1})
);
constraint forall(i in 1..Y) (
nonogram_row(A, [rows[i, j] | j in 1..maxlen where rows[i, j] >= 0], i)
);
constraint forall(i in 1..X) (
nonogram_col(A, [cols[i, j] | j in 1..maxlen where cols[i, j] >= 0], i)
);
solve :: int_search(array1d(1..X*Y,A),input_order,indomain_max,complete) satisfy;
output [
if fix(A[r, c]) = 1 then " " else "." endif ++
if c = Y then "\n" else " " endif
| r in 1..X, c in 1..Y
];