Download
/*

  Crossfigure problem (CSPLib #21) in B-Prolog.

  CSPLib problem 21
  http://www.cs.st-andrews.ac.uk/~ianm/CSPLib/prob/prob021/index.html
  """
  Crossfigures are the numerical equivalent of crosswords. You have a grid and some 
  clues with numerical answers to place on this grid. Clues come in several different 
  forms (for example: Across 1. 25 across times two, 2. five dozen, 5. a square number, 
  10. prime, 14. 29 across times 21 down ...). 
  """
 
  Also, see 
  http://en.wikipedia.org/wiki/Cross-figure
  
  William Y. Sit: "On Crossnumber Puzzles and The Lucas-Bonaccio Farm 1998
  http://scisun.sci.ccny.cuny.edu/~wyscc/CrossNumber.pdf
  
  Bill Williams: Crossnumber Puzzle, The Little Pigley Farm
  http://jig.joelpomerantz.com/fun/dogsmead.html

  Model created by Hakan Kjellerstrand, hakank@gmail.com
  See also my B-Prolog page: http://www.hakank.org/bprolog/

*/

% Licenced under CC-BY-4.0 : http://creativecommons.org/licenses/by/4.0/


/*

  This model was inspired by the ECLiPSe model written by Warwick Harvey:
  http://www.cs.st-andrews.ac.uk/~ianm/CSPLib/prob/prob021/code.html
 
 
  Data from 
  http://thinks.com/crosswords/xfig.htm.
 
  This problem is 001 from http://thinks.com/crosswords/xfig.htm 
  ("X" is the blackbox and is fixed to the value of 0)
 
  1  2  3  4  5  6  7  8  9
  ---------------------------
  1  2  _  3  X  4  _  5  6    1
  7  _  X  8  _  _  X  9  _    2
  _  X  10 _  X  11 12 X  _    3
  13 14 _  _  X  15 _  16 _    4 
  X  _  X  X  X  X  X  _  X    5 
  17 _  18 19 X  20 21 _ 22    6
  _  X  23 _  X  24 _  X  _    7
  25 26 X  27 _  _  X  28 _    8
  29 _  _  _  X  30 _  _  _    9

 
  The answer is
   1608 9183
   60 201 42
   3 72 14 1
   5360 2866
    3     4
   4556 1156
   9 67 16 8
   68 804 48
   1008 7332

  Solutions:
  MiniZinc and Gecode/fz solves the problem in about 8 seconds.
  ECLiPSe/ic: 35 seconds
  MiniZinc/fdmip in 14 seconds.

  Comet: 1 second.

*/

go :-

        N = 9,

        % Domain = 0..9999, % the max length of the numbers in this problem is 4

        new_array(M,[N,N]),
        array_to_list(M,MVars),
        MVars :: 0..9,

        AList = [A1,A4,A7,A8,A9,A10,A11,A13,A15,A17,A20,A23,A24,A25,A27,A28,A29,A30],
        AList :: 0..9999,
        DList = [D1,D2,D3,D4,D5,D6,D10,D12,D14,D17,D18,D19,D20,D21,D22,D26,D28],
        DList :: 0..9999,

        % Set up the constraints between the matrix elements and the
        % clue numbers.
        across(M, A1, 4, 1, 1), 
        across(M, A4, 4, 1, 6), 
        across(M, A7, 2, 2, 1), 
        across(M, A8, 3, 2, 4), 
        across(M, A9, 2, 2, 8), 
        across(M, A10, 2, 3, 3), 
        across(M, A11, 2, 3, 6), 
        across(M, A13, 4, 4, 1), 
        across(M, A15, 4, 4, 6), 
        across(M, A17, 4, 6, 1), 
        across(M, A20, 4, 6, 6), 
        across(M, A23, 2, 7, 3), 
        across(M, A24, 2, 7, 6), 
        across(M, A25, 2, 8, 1), 
        across(M, A27, 3, 8, 4), 
        across(M, A28, 2, 8, 8), 
        across(M, A29, 4, 9, 1), 
        across(M, A30, 4, 9, 6), 

        down(M, D1, 4, 1, 1), 
        down(M, D2, 2, 1, 2), 
        down(M, D3, 4, 1, 4), 
        down(M, D4, 4, 1, 6), 
        down(M, D5, 2, 1, 8), 
        down(M, D6, 4, 1, 9), 
        down(M, D10, 2, 3, 3), 
        down(M, D12, 2, 3, 7), 
        down(M, D14, 3, 4, 2), 
        down(M, D16, 3, 4, 8), 
        down(M, D17, 4, 6, 1), 
        down(M, D18, 2, 6, 3), 
        down(M, D19, 4, 6, 4), 
        down(M, D20, 4, 6, 6), 
        down(M, D21, 2, 6, 7), 
        down(M, D22, 4, 6, 9), 
        down(M, D26, 2, 8, 2), 
        down(M, D28, 2, 8, 8), 

        
        % Set up the clue constraints.
        %  Across
        %  1 27 across times two
        %  4 4 down plus seventy-one
        %  7 18 down plus four
        %  8 6 down divided by sixteen
        %  9 2 down minus eighteen
        % 10 Dozen in six gross
        % 11 5 down minus seventy
        % 13 26 down times 23 across
        % 15 6 down minus 350
        % 17 25 across times 23 across
        % 20 A square number
        % 23 A prime number
        % 24 A square number
        % 25 20 across divided by seventeen
        % 27 6 down divided by four
        % 28 Four dozen
        % 29 Seven gross
        % 30 22 down plus 450 
        
        A1 #= 2 * A27,
        A4 #= D4 + 71,
        A7 #= D18 + 4,
        A8 #= D6 // 16,
        A9 #= D2 - 18,
        A10 #= 6 * 144 // 12,
        A11 #= D5 - 70,
        A13 #= D26 * A23,
        A15 #= D6 - 350,
        A17 #= A25 * A23,

        square(A20),
        is_prime(A23),
        square(A24),
        A25 #= A20 // 17,
        A27 #= D6 // 4,
        A28 #= 4 * 12,
        A29 #= 7 * 144,
        A30 #= D22 + 450,

        % Down
        %
        %  1 1 across plus twenty-seven
        %  2 Five dozen
        %  3 30 across plus 888
        %  4 Two times 17 across
        %  5 29 across divided by twelve
        %  6 28 across times 23 across
        % 10 10 across plus four
        % 12 Three times 24 across
        % 14 13 across divided by sixteen
        % 16 28 down times fifteen
        % 17 13 across minus 399
        % 18 29 across divided by eighteen
        % 19 22 down minus ninety-four
        % 20 20 across minus nine
        % 21 25 across minus fifty-two
        % 22 20 down times six
        % 26 Five times 24 across
        % 28 21 down plus twenty-seven 

        D1 #= A1 + 27,
        D2 #= 5 * 12,

        D3 #= A30 + 888,
        D4 #= 2 * A17,

        D5 #= A29 // 12,
        D6 #= A28 * A23,
        D10 #= A10 + 4,

        D12 #= A24 * 3,
        D14 #= A13 // 16,
        D16 #= 15 * D28,
        D17 #= A13 - 399,
        D18 #= A29 // 18,
        D19 #= D22 - 94,
        D20 #= A20 - 9,
        D21 #= A25 - 52,
        D22 #= 6 * D20,
        D26 #= 5 * A24,
        D28 #= D21 + 27,

        % Fix the black boxes
        M[1,5] #= 0,
        M[2,3] #= 0,
        M[2,7] #= 0,
        M[3,2] #= 0,
        M[3,5] #= 0,
        M[3,8] #= 0,
        M[4,5] #= 0,
        M[5,1] #= 0,
        M[5,3] #= 0,
        M[5,4] #= 0,
        M[5,5] #= 0,
        M[5,6] #= 0,
        M[5,7] #= 0,
        M[5,9] #= 0,
        M[6,5] #= 0,
        M[7,2] #= 0,
        M[7,5] #= 0,
        M[7,8] #= 0,
        M[8,3] #= 0,
        M[8,7] #= 0,
        M[9,5] #= 0,


        term_variables([MVars,AList,DList], Vars),
        labeling(Vars),

        writeln(M).

           


          
/*
 across(Matrix, Across, Len, Row, Col)
	Constrains 'Across' to be equal to the number represented by the
	'Len' digits starting at position (Row, Col) of the array 'Matrix'
	and proceeding across.
*/
across(Matrix, Across, Len, Row, Col) :-
        length(Tmp,Len),
        Tmp :: 0..9999,
        toNum10(Tmp, Across),
        foreach(I in 0..Len-1,
                Matrix[Row,Col+I] #= Tmp[I+1]
               ).


/*
 down(Matrix, Down, Len, Row, Col):
	Constrains 'Down' to be equal to the number represented by the
	'Len' digits starting at position (Row, Col) of the array 'Matrix'
	and proceeding down.
*/
down(Matrix, Down, Len, Row, Col) :-
        length(Tmp,Len),
        Tmp :: 0..9999,
        toNum10(Tmp, Down),
        foreach(I in 0..Len-1,
                Matrix[Row+I,Col] #= Tmp[I+1]
               ).

/*
 x is a prime
*/
is_prime(X) :-
        fd_max(X,Max),
        foreach(I in 2..Max // 2,
                I #\= X #=> X mod I #> 0
               ).

%
% x is a square
%
square(X) :-
        fd_max(X,Max),
        Tmp :: 0..Max,
        X #= Tmp**2.

toNum10(List,Num) :-
        toNum(List,10,Num).

%
% converts a number Num to/from a list of integer List given a base Base
%
toNum(List, Base, Num) :-
        length(List, Len),
        length(Xs, Len),
        exp_list(Len, Base, Xs), % calculate exponents
        scalar_product(List,Xs,#=,Num).


%
% Exponents for toNum2: [Base^(N-1), Base^(N-2), .., Base^0],
%    e.g. exp_list2(3, 10, ExpList) -> ExpList = [100,10,1]
%
exp_list(N, Base, ExpList) :-
        length(ExpList, N),
        ExpList1 @= [B : I in 0..N-1, [B], B is integer(Base**I)],
        reverse(ExpList1,ExpList).