1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | % % Killer Sudoku in MiniZinc. % % Killer sudoku in Comet. % """ % Killer sudoku (also killer su doku, sumdoku, sum doku, addoku, or % samunamupure) is a puzzle that combines elements of sudoku and kakuro. % Despite the name, the simpler killer sudokus can be easier to solve % than regular sudokus, depending on the solver's skill at mental arithmetic; % the hardest ones, however, can take hours to crack. % ... % The objective is to fill the grid with numbers from 1 to 9 in a way that % the following conditions are met: % * Each row, column, and nonet contains each number exactly once. % * The sum of all numbers in a cage must match the small number printed % in its corner. % * No number appears more than once in a cage. (This is the standard rule % for killer sudokus, and implies that no cage can include more % than 9 cells.) % In 'Killer X', an additional rule is that each of the long diagonals % contains each number once. % """ % Here we solve the problem from the Wikipedia page, also shown here % Note, this model is based on the generalized KenKen model: % Killer Sudoku is simpler in that the only mathematical operation is % summation. % The output is: % 2 1 5 6 4 7 3 9 8 % 3 6 8 9 5 2 1 7 4 % 7 9 4 3 8 1 6 5 2 % 5 8 6 2 7 4 9 3 1 % 1 4 2 5 9 3 8 6 7 % 9 7 3 8 1 6 4 2 5 % 8 2 1 7 3 9 5 4 6 % 6 5 9 4 2 8 7 1 3 % 4 3 7 1 6 5 2 8 9 % % Also, see the following models: % MiniZinc: http://www.hakank.org/minizinc/kenken2.mzn % MiniZinc: http://www.hakank.org/minizinc/kakuro.mzn % % This MiniZinc model was created by Hakan Kjellerstrand, hakank@gmail.com % See also my MiniZinc page: http://www.hakank.org/minizinc % % Licenced under CC-BY-4.0 : http://creativecommons.org/licenses/by/4.0/ include "globals.mzn" ; int : n = 9; array [1 .. n, 1 .. n] of var 1 .. 9: x; % % state the problem % % For a better view of the problem, see % int : num_p = 29; % number of segments int : num_hints = 4; % number of hints per segments (that's max number of hints) int : max_val = 100; array [1 .. num_p, 1 .. 2 * num_hints + 1] of 0 .. max_val: P = array2d (1 .. num_p, 1 .. 2 * num_hints + 1, [ 1,1, 1,2, 0,0, 0,0, 3, 1,3, 1,4, 1,5, 0,0, 15, 1,6, 2,5, 2,6, 3,5, 22, 1,7, 2,7, 0,0, 0,0, 4, 1,8, 2,8, 0,0, 0,0, 16, 1,9, 2,9, 3,9, 4,9, 15, 2,1, 2,2, 3,1, 3,2, 25, 2,3, 2,4, 0,0, 0,0, 17, 3,3, 3,4, 4,4, 0,0, 9, 3,6, 4,6, 5,6, 0,0, 8, 3,7, 3,8, 4,7, 0,0, 20, 4,1, 5,1, 0,0, 0,0, 6, 4,2, 4,3, 0,0, 0,0, 14, 4,5, 5,5, 6,5, 0,0, 17, 4,8, 5,7, 5,8, 0,0, 17, 5,2, 5,3, 6,2, 0,0, 13, 5,4, 6,4, 7,4, 0,0, 20, 5,9, 6,9, 0,0, 0,0, 12, 6,1, 7,1, 8,1, 9,1, 27, 6,3, 7,2, 7,3, 0,0, 6, 6,6, 7,6, 7,7, 0,0, 20, 6,7, 6,8, 0,0, 0,0, 6, 7,5, 8,4, 8,5, 9,4, 10, 7,8, 7,9, 8,8, 8,9, 14, 8,2, 9,2, 0,0, 0,0, 8, 8,3, 9,3, 0,0, 0,0, 16, 8,6, 8,7, 0,0, 0,0, 15, 9,5, 9,6, 9,7, 0,0, 13, 9,8, 9,9, 0,0, 0,0, 17 ]); % solve satisfy; solve :: int_search([x[i,j] | i,j in 1 .. n], first_fail, indomain_min, complete) satisfy ; constraint forall(i in 1 .. n) ( all_different([x[i,j] | j in 1 .. n]) /\ all_different([x[j,i] | j in 1 .. n]) ) /\ forall(i in 0 .. 2,j in 0 .. 2) ( all_different([x[r,c] | r in i * 3 + 1 .. i * 3 + 3, c in j * 3 + 1 .. j * 3 + 3] ) ) /\ % calculate the hints forall(p in 1 .. num_p) ( sum (i in 1 .. num_hints where P[p,2*(i - 1)+1] > 0) (x[ P[p, 2*(i - 1)+1], P[p,2*(i - 1)+2] ]) = P[p, 2 * num_hints + 1] ) ; output [ if j = 1 then "\n" else " " endif ++ show (x[i,j]) | i,j in 1 .. n ]; |