Download
/*
Fractions problem in ECLiPSe.
Prolog benchmark problem (BProlog)
"""
Find distinct non-zero digits such that the following equation holds:
A D G
------ + ----- + ------ = 1
B*C E*F H*I
"""
Compare with the following models:
* MiniZinc: http://www.hakank.org/minizinc/fractions.mzn
* SICStus Prolog: http://www.hakank.org/sicstus/fractions.pl
Model created by Hakan Kjellerstrand, hakank@gmail.com
See also my ECLiPSe page: http://www.hakank.org/eclipse/
*/
% Licenced under CC-BY-4.0 : http://creativecommons.org/licenses/by/4.0/
:-lib(ic).
:-lib(ic_global).
:-lib(ic_global_gac).
%:-lib(ic_search).
%:-lib(branch_and_bound).
%:-lib(listut).
selection([input_order,first_fail, anti_first_fail, smallest,largest,
occurrence,most_constrained,max_regret]).
choice([indomain,indomain_min,indomain_max,indomain_middle,
indomain_median,indomain_split, indomain_random,
indomain_interval]).
go :-
findall([Digits,Backtracks],
fractions(most_constrained,indomain_median,Digits,Backtracks),
List),
( foreach([Digits,Backtracks],List) do
writeln(Digits),
writeln(backtracks:Backtracks)
).
fractions(Selection, Choice, Digits, Backtracks) :-
Digits = [A,B,C,D,E,F,G,H,I],
Digits :: 1..9,
ic:alldifferent(Digits),
DD = [D1,D2,D3],
DD :: 1..81,
D1 #= 10*B+C,
D2 #= 10*E+F,
D3 #= 10*H+I,
A*D2*D3 + D*D1*D3 + G*D1*D2 #= D1*D2*D3,
% break the symmetry
A*D2 #>= D*D1,
D*D3 #>= G*D2,
%redundant constraints
3*A #>= D1,
3*G #=< D2,
% search
term_variables([Digits],Vars),
search(Vars,0,Selection,Choice,complete, [backtrack(Backtracks)]).