Download
/*
Car sequencing in Comet.
This is based on the OPL3 model car.mod.
This Comet model was created by Hakan Kjellerstrand (hakank@bonetmail.com)
Also, see my Comet page: http://www.hakank.org/comet
*/
// Licenced under CC-BY-4.0 : http://creativecommons.org/licenses/by/4.0/
import cotfd;
int t0 = System.getCPUTime();
int nbCars = 6;
int nbOptions = 5;
int nbSlots = 10;
range Cars = 1..nbCars;
range Options = 1..nbOptions;
range Slots = 1..nbSlots;
int demand[Cars] = [1, 1, 2, 2, 2, 2];
int option[Options,Cars] =
[
[ 1, 0, 0, 0, 1, 1],
[ 0, 0, 1, 1, 0, 1],
[ 1, 0, 0, 0, 1, 0],
[ 1, 1, 0, 1, 0, 0],
[ 0, 0, 1, 0, 0, 0]
];
tuple Tcapacity {
int l;
int u;
}
Tcapacity capacity[Options] =
[
Tcapacity(1,2),
Tcapacity(2,3),
Tcapacity(1,3),
Tcapacity(2,5),
Tcapacity(1,5)
];
int optionDemand[i in Options] = sum(j in Cars) demand[j] * option[i,j];
cout << "optionDemand: " << optionDemand<< endl;
Solver m();
var{int} slot[Slots](m,Cars);
var{int} setup[Options,Slots](m,0..1);
Integer num_solutions(0);
// exploreall {
minimize sum(s in Cars) s*slot[s] subject to {
forall(c in Cars )
m.post(sum(s in Slots ) (slot[s] == c) == demand[c]);
forall(o in Options, s in 1..nbSlots - capacity[o].u + 1)
m.post(sum(j in s..s + capacity[o].u - 1) setup[o,j] <= capacity[o].l);
forall(o in Options, s in Slots )
m.post(setup[o,s] == option[o,slot[s]]);
forall(o in Options, i in 1..optionDemand[o])
m.post(sum(s in 1..(nbSlots - i * capacity[o].u)) setup[o,s] >=
(optionDemand[o] - i * capacity[o].l));
} using {
label(m);
num_solutions := num_solutions + 1;
cout << slot << endl;
forall(o in Options) {
cout << capacity[o].l << "/" << capacity[o].u << ": " ;
forall(s in Slots) {
cout << setup[o,s] << " ";
}
cout << endl;
}
cout << endl;
}
cout << "\nnum_solutions: " << num_solutions << endl;
int t1 = System.getCPUTime();
cout << "time: " << (t1-t0) << endl;
cout << "#choices = " << m.getNChoice() << endl;
cout << "#fail = " << m.getNFail() << endl;
cout << "#propag = " << m.getNPropag() << endl;