Download
%
% Fractions problem in MiniZinc.
%
% Prolog benchmark problem (BProlog)
% """
% Find distinct non-zero digits such that the following equation holds:
% A D G
% ------ + ----- + ------ = 1
% B*C E*F H*I
% """
%
% This MiniZinc model was created by Hakan Kjellerstrand, hakank@gmail.com
% See also my MiniZinc page: http://www.hakank.org/minizinc
%
% Licenced under CC-BY-4.0 : http://creativecommons.org/licenses/by/4.0/
% 8 Solutions:
% [7, 2, 4, 5, 8, 9, 1, 3, 6]
% [7, 2, 4, 5, 8, 9, 1, 6, 3]
% [7, 2, 4, 5, 9, 8, 1, 3, 6]
% [7, 2, 4, 5, 9, 8, 1, 6, 3]
% [7, 4, 2, 5, 8, 9, 1, 3, 6]
% [7, 4, 2, 5, 8, 9, 1, 6, 3]
% [7, 4, 2, 5, 9, 8, 1, 3, 6]
% [7, 4, 2, 5, 9, 8, 1, 6, 3]
include "globals.mzn";
var 1..9: A;
var 1..9: B;
var 1..9: C;
var 1..9: D;
var 1..9: E;
var 1..9: F;
var 1..9: G;
var 1..9: H;
var 1..9: I;
array[1..9] of var 1..9: Vars=[A,B,C,D,E,F,G,H,I];
var 1..81: D1;
var 1..81: D2;
var 1..81: D3;
% solve satisfy;
solve :: int_search(Vars ++ [D1,D2,D3], first_fail, indomain_min, complete) satisfy;
constraint
all_different(Vars) /\
D1 = B*C /\
D2 = E*F /\
D3 = H*I /\
A*D2*D3 + D*D1*D3 + G*D1*D2 = D1*D2*D3 /\
% break the symmetry
A*D2 >= D*D1 /\
D*D3 >= G*D2 /\
%redundant constraints
3*A >= D1 /\
3*G <= D2
;
output [
show(Vars), "\n"
]
;