Download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
/*
  Langford's number problem in Comet
 
 
  Langford's number problem (CSP lib problem 24)
  """
  Arrange 2 sets of positive integers 1..k to a sequence,
  such that, following the first occurence of an integer i,
  each subsequent occurrence of i, appears i+1 indices later
  than the last.
  For example, for k=4, a solution would be 41312432
  """
   
  * John E. Miller: Langford's Problem
    http://www.lclark.edu/~miller/langford.html
   
  * Encyclopedia of Integer Sequences for the number of solutions for each k
  
 
  Also, see the following models:
 
 
  This Comet model was created by Hakan Kjellerstrand (hakank@gmail.com)
  Also, see my Comet page: http://www.hakank.org/comet
 
 */
 
// Licenced under CC-BY-4.0 : http://creativecommons.org/licenses/by/4.0/
 
import cotfd;
// import cotls;
// import cotln;
int t0 = System.getCPUTime();
 
int k = 4;
if (System.argc() >= 3) {
  k = System.getArgs()[2].toInt();
}
 
 
range positionDomain = 1..2*k;
 
Solver<CP> m();
var<CP>{int} position[i in positionDomain](m, positionDomain);
var<CP>{int} solution[i in positionDomain](m, 1..k);
 
Integer num_solutions(0);
 
// explore<m> {
exploreall<m> {
 
  forall(i in 1..k) {
    m.post(position[i+k] == position[i] + i+1 );
    m.post(solution[position[i]] == i );
    m.post(solution[position[k+i]] == i);
  }
 
  m.post(alldifferent(position));
  // symmetry breaking
  m.post(solution[1] < solution[2*k]);
 
 
  } using {
       
    // label(position);
    // label(solution);
    /*
    forall(i in positionDomain : !position[i].bound()) {// by (-position[i].getSize()) {
      label(position[i]);
    }
 
    forall(i in positionDomain : !solution[i].bound()) {// by (-solution[i].getSize()) {
      label(solution[i]);
    }
    */
    labelFF(m);
    
    // cout << position << endl;
    cout << solution << endl;
     
    num_solutions := num_solutions + 1;
 
}
 
cout << "num_solutions: " << num_solutions << endl;
     
int t1 = System.getCPUTime();
cout << "time:      " << (t1-t0) << endl;
cout << "#choices = " << m.getNChoice() << endl;
cout << "#fail    = " << m.getNFail() << endl;
cout << "#propag  = " << m.getNPropag() << endl;