Download
/*
Langford's number problem in SICStus Prolog.
Langford's number problem (CSP lib problem 24)
http://www.csplib.org/Problems/prob024/
"""
Arrange 2 sets of positive integers 1..k to a sequence,
such that, following the first occurence of an integer i,
each subsequent occurrence of i, appears i+1 indices later
than the last.
For example, for k=4, a solution would be 41312432
"""
* John E. Miller: Langford's Problem
http://www.lclark.edu/~miller/langford.html
* Encyclopedia of Integer Sequences for the number of solutions for each k
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=014552
Also, see the following models:
* MiniZinc: http://www.hakank.org/minizinc/langford2.mzn
* Comet : http://www.hakank.org/comet/langford.co
* Gecode/R: http://www.hakank.org/gecode_r/langford.rb
* ECLiPSe : http://www.hakank.org/eclipse/langford.ecl
Model created by Hakan Kjellerstrand, hakank@gmail.com
See also my SICStus Prolog page: http://www.hakank.org/sicstus/
*/
% Licenced under CC-BY-4.0 : http://creativecommons.org/licenses/by/4.0/
:-use_module(library(clpfd)).
:-use_module(library(lists)).
go :-
K in 2..8,
indomain(K),
write(K),nl,
findall([K,Solution,Position], langford(K,Solution,Position),
L),
length(L,Len),
write(L),nl,
write(len:Len),nl,
nl,
fd_statistics,
fail.
langford(K, Solution, Position) :-
K2 is 2*K,
length(Position, K2),
domain(Position,1,K2),
length(Solution,K2),
domain(Solution,1,K),
all_different(Position),
% symmetry breaking
nth1(1,Solution,Solution1),
nth1(K2,Solution,SolutionK2),
Solution1 #< SolutionK2,
( for(I,1,K),
param(Position,Solution,K)
do
IK is I+K,
element(IK, Position, PositionIK),
element(I, Position, PositionI),
I1 is I+1,
PositionIK #= PositionI + I1,
element(PositionI,Solution,SolutionPositionI),
SolutionPositionI #= I,
element(PositionIK,Solution,SolutionPositionIK),
SolutionPositionIK #= I
),
append(Solution,Position, Vars),
labeling([ffc,bisect,down], Vars).