Download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
%
% K4P2 Graceful Graph in MiniZinc.
%
% Problem from Minion summer_school/examples/K4P2GracefulGraph.eprime
%
% This is a more general model than K4P2GracefulGraph.mzn
%
% Model created by Hakan Kjellerstrand, hakank@bonetmail.com
% See also my MiniZinc page: http://www.hakank.org/minizinc
 
include "globals.mzn";
 
int: m = 16;
int: n = 8;
array[1..n] of var 0..m: nodes;
array[1..m, 1..2] of var 1..n: graph;
array[1..m] of var 1..m: edges;
 
 
 
solve :: int_search(nodes, first_fail, indomain_min, complete) satisfy;
 
constraint
  forall(i in 1..m) (
    abs(nodes[graph[i,1]] - nodes[graph[i,2]]) = edges[i] 
  )
  /\
  all_different(edges)
  /\
  all_different(nodes)
;
 
graph =
array2d(1..m, 1..2,
[1, 2,
1, 3,
1, 4,
2, 3,
2, 4,
3, 4,
 
5, 6,
5, 7,
5, 8,
6, 7,
6, 8,
7, 8,
 
1, 5,
2, 6,
3, 7,
4, 8]);
 
output
[
  "nodes: " ++ show(nodes) ++ "\n" ++
  "edges: " ++ show(edges) ++ "\n"
];