Download
%
% ECLiPSe sample code - Steiner triplets
%
% The following program computes so-called Steiner triplets.
% These are triplets of numbers from 1 to N such that any
% two triplets have at most one element in common.
%
% Here is an example of running this program:
%
% ?- steiner(9,X).
%
% X = [[1, 2, 3], [1, 4, 5], [1, 6, 7], [1, 8, 9],
% [2, 4, 6], [2, 5, 8], [2, 7, 9], [3, 4, 9],
% [3, 5, 7], [3, 6, 8], [4, 7, 8], [5, 6, 9]]
% Yes (2.89s cpu, solution 1, maybe more) ? ;
%
:- lib(ic_sets), lib(ic).
steiner(N, Sets) :-
NB is N * (N-1) // 6, % compute number of triplets
intsets(Sets, NB, 1, N), % initialise the set variables
( foreach(S,Sets) do
#(S,3) % constrain their cardinality to 3
),
( fromto(Sets,[S1|Ss],Ss,[]) do
( foreach(S2,Ss), param(S1) do
#(S1 /\ S2, C), % constrain the cardinality
C #=< 1 % of pairwise intersections to 1
)
),
label_sets(Sets). % search
label_sets([]).
label_sets([S|Ss]) :-
insetdomain(S,_,_,_),
label_sets(Ss).