Download
//
// Copyright 2012 Hakan Kjellerstrand
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Diagnostics;
using Google.OrTools.ConstraintSolver;
public class SetPartition
{
//
// Partition the sets (binary matrix representation).
//
public static void partition_sets(Solver solver,
IntVar[,] x, int num_sets, int n)
{
for(int i = 0; i <num_sets; i++) {
for(int j = 0; j <num_sets; j++) {
if (i != j) {
// b = solver.Sum([x[i,k]*x[j,k] for k in range(n)]);
// solver.Add(b == 0);
solver.Add( (from k in Enumerable.Range(0, n)
select (x[i,k]*x[j,k])).
ToArray().Sum() == 0);
}
}
}
// ensure that all integers is in
// (exactly) one partition
solver.Add( (from i in Enumerable.Range(0, num_sets)
from j in Enumerable.Range(0, n)
select x[i,j]).ToArray().Sum() == n);
}
/**
*
* Set partition problem.
*
* Problem formulation from
* http://www.koalog.com/resources/samples/PartitionProblem.java.html
* """
* This is a partition problem.
* Given the set S = {1, 2, ..., n},
* it consists in finding two sets A and B such that:
*
* A U B = S,
* |A| = |B|,
* sum(A) = sum(B),
* sum_squares(A) = sum_squares(B)
*
* """
*
* This model uses a binary matrix to represent the sets.
*
*
* Also see http://www.hakank.org/or-tools/set_partition.py
*
*/
private static void Solve(int n=16, int num_sets=2)
{
Solver solver = new Solver("SetPartition");
Console.WriteLine("n: {0}", n);
Console.WriteLine("num_sets: {0}", num_sets);
IEnumerable<int> Sets = Enumerable.Range(0, num_sets);
IEnumerable<int> NRange = Enumerable.Range(0, n);
//
// Decision variables
//
IntVar[,] a = solver.MakeIntVarMatrix(num_sets, n, 0, 1, "a");
IntVar[] a_flat = a.Flatten();
//
// Constraints
//
// partition set
partition_sets(solver, a, num_sets, n);
foreach(int i in Sets) {
foreach(int j in Sets) {
// same cardinality
solver.Add(
(from k in NRange select a[i,k]).ToArray().Sum()
==
(from k in NRange select a[j,k]).ToArray().Sum());
// same sum
solver.Add(
(from k in NRange select (k*a[i,k])).ToArray().Sum()
==
(from k in NRange select (k*a[j,k])).ToArray().Sum());
// same sum squared
solver.Add(
(from k in NRange select (k*a[i,k]*k*a[i,k])).ToArray().Sum()
==
(from k in NRange select (k*a[j,k]*k*a[j,k])).ToArray().Sum());
}
}
// symmetry breaking for num_sets == 2
if (num_sets == 2) {
solver.Add(a[0,0] == 1);
}
//
// Search
//
DecisionBuilder db = solver.MakePhase(a_flat,
Solver.INT_VAR_DEFAULT,
Solver.INT_VALUE_DEFAULT);
solver.NewSearch(db);
while (solver.NextSolution()) {
int[,] a_val = new int[num_sets, n];
foreach(int i in Sets) {
foreach(int j in NRange) {
a_val[i,j] = (int)a[i,j].Value();
}
}
Console.WriteLine("sums: {0}",
(from j in NRange
select (j+1)*a_val[0,j]).ToArray().Sum());
Console.WriteLine("sums squared: {0}",
(from j in NRange
select (int)Math.Pow((j+1)*a_val[0,j],2)).ToArray().Sum());
// Show the numbers in each set
foreach(int i in Sets) {
if ( (from j in NRange select a_val[i,j]).ToArray().Sum() > 0 ) {
Console.Write(i+1 + ": ");
foreach(int j in NRange) {
if (a_val[i,j] == 1) {
Console.Write((j+1) + " ");
}
}
Console.WriteLine();
}
}
Console.WriteLine();
}
Console.WriteLine("\nSolutions: {0}", solver.Solutions());
Console.WriteLine("WallTime: {0}ms", solver.WallTime());
Console.WriteLine("Failures: {0}", solver.Failures());
Console.WriteLine("Branches: {0} ", solver.Branches());
solver.EndSearch();
}
public static void Main(String[] args)
{
int n = 16;
int num_sets = 2;
if (args.Length > 0) {
n = Convert.ToInt32(args[0]);
}
if (args.Length > 1) {
num_sets = Convert.ToInt32(args[1]);
}
if (n % num_sets == 0) {
Solve(n, num_sets);
} else {
Console.WriteLine("n {0} num_sets {1}: Equal sets is not possible!",
n, num_sets);
}
}
}