Download
/*
* SICSTUS CLPFD DEMONSTRATION PROGRAM
* Purpose : Conway's game of life
* The goal is to find a 12x12 still-life pattern with 76
* filled squares.
* Author : Mats Carlsson
*
* | ?- still_life(plain_mirror, 12, 12, 76).
*
*/
:- module(life, [still_life/4]).
:- use_module(library(lists)).
:- use_module(library(avl)).
:- use_module(library(clpfd)).
still_life(plain, NR, NC, Sum) :-
still(plain, NR, NC, Sum, Cells),
labeling([down], Cells),
draw(Cells, NC).
still_life(plain_rot, NR, NC, Sum) :-
still(plain_rot, NR, NC, Sum, Cells),
reverse(Cells, Rev),
Cells = Rev,
labeling([down], Cells),
draw(Cells, NC).
still_life(plain_mirror, NR, NC, Sum) :-
still(mirror, NR, NC, Sum, Cells),
labeling([down], Cells),
draw(Cells, NC).
still(mirror, NR, NC, Sum, AllCells) :- !,
NRhalf is (NR+1)>>1,
Ncells is NRhalf*NC,
length(Cells, Ncells),
domain(Cells, 0, 1),
Ncopies is (NR>>1)*NC,
mirror_cells(Ncopies, NC, Cells, AllCells, []),
mirror_coeffs(Ncopies, Ncells, Coeffs, []),
scalar_product(Coeffs, Cells, #=, Sum),
tag_by_coords(Cells, 0, NC, KL),
ord_list_to_avl(KL, Avl),
( NR/\1 =:= 0 ->
NR1 is NRhalf-1,
NR2 is NRhalf-2,
still_rows(-1, NR2, NC, Avl, best, Tuples, Tuples1),
still_even_mid_row(-1, NC, NR1, Avl, best, Tuples1, [])
; NR1 is NRhalf-1,
NR2 is NRhalf-2,
still_rows(-1, NR2, NC, Avl, best, Tuples, Tuples1),
still_odd_mid_row(-1, NC, NR1, Avl, best, Tuples1, [])
),
% valid3x3_table(best, Ext),
% table(Tuples, Ext),
cell_constraint(Tuples),
% symmetries
NC1 is NC-1,
part(KL, 0, NRhalf, 0, 1, Left),
part(KL, 0, NRhalf, NC1, NC, Right),
lex_chain([Right,Left]).
still(_, NR, NC, Sum, Cells) :-
Ncells is NR*NC,
length(Cells, Ncells),
domain(Cells, 0, 1),
sum(Cells, #=, Sum),
tag_by_coords(Cells, 0, NC, KL),
ord_list_to_avl(KL, Avl),
still_rows(-1, NR, NC, Avl, best, Tuples, []),
% valid3x3_table(best, Ext),
% table(Tuples, Ext),
cell_constraint(Tuples),
% symmetries
NR1 is NR-1,
NC1 is NC-1,
part(KL, 0, 1, 0, NC, Upper),
part(KL, NR1, NR, 0, NC, Lower),
part(KL, 0, NR, 0, 1, Left),
part(KL, 0, NR, NC1, NC, Right),
lex_chain([Lower,Upper]),
lex_chain([Right,Left]).
mirror_cells(0, _, Cells, S0, S) :-
append(Cells, S, S0).
mirror_cells(N1, NC, Cells, S0, S) :-
length(Row, NC),
append(Row, Tail, Cells),
append(Row, S1, S0),
N2 is N1-NC,
mirror_cells(N2, NC, Tail, S1, S2),
append(Row, S, S2).
cell_constraint([]).
cell_constraint([T|Ts]) :-
var_order(best, [A,B,C,D,E,F,G,H,I], T),
S in {0,1,2,4,5,6,12,13},
scalar_product([10,1,1,1,1,1,1,1,1], [E,A,B,C,D,F,G,H,I], #=, S, [consistency(domain)]),
cell_constraint(Ts).
mirror_coeffs(0, 0) --> !.
mirror_coeffs(0, J1) --> !, [1],
{J2 is J1-1},
mirror_coeffs(0, J2).
mirror_coeffs(I1, J1) --> [2],
{I2 is I1-1},
{J2 is J1-1},
mirror_coeffs(I2, J2).
part([], _, _, _, _, []).
part([(R,C)-X|KL], Rmin, Rmax, Cmin, Cmax, L1) :-
( R>=Rmin, R<Rmax, C>=Cmin, C<Cmax -> L1=[X|L1b]
; L1=L1b
),
part(KL, Rmin, Rmax, Cmin, Cmax, L1b).
tag_by_coords([], _, _, []).
tag_by_coords([C|Cells], I, NC, [(Row,Col)-C|KL]) :-
Row is I//NC,
Col is I mod NC,
J is I+1,
tag_by_coords(Cells, J, NC, KL).
still_rows(I, NR, _, _, _Order) -->
{I>NR}, !.
still_rows(I, NR, NC, Avl, Order) -->
still_cells(-1, NC, I, Avl, Order),
{J is I+1},
still_rows(J, NR, NC, Avl, Order).
still_cells(Col, NC, _, _, _Order) -->
{Col>NC}, !.
still_cells(Col, NC, Row, Avl, Order) --> [Tuple],
{Up is Row-1},
{Down is Row+1},
{Left is Col-1},
{Right is Col+1},
{elts([(Up,Left),(Up,Col),(Up,Right),(Row,Left),(Row,Col),(Row,Right),(Down,Left),(Down,Col),(Down,Right)], Avl, Tuple0, [])},
{var_order(Order, Tuple0, Tuple)},
{Col1 is Col+1},
still_cells(Col1, NC, Row, Avl, Order).
still_even_mid_row(Col, NC, _, _, _Order) -->
{Col>NC}, !.
still_even_mid_row(Col, NC, Row, Avl, Order) --> [Tuple],
{Up is Row-1},
{Left is Col-1},
{Right is Col+1},
{elts([(Up,Left),(Up,Col),(Up,Right),(Row,Left),(Row,Col),(Row,Right),(Row,Left),(Row,Col),(Row,Right)], Avl, Tuple0, [])},
{var_order(Order, Tuple0, Tuple)},
{Col1 is Col+1},
still_even_mid_row(Col1, NC, Row, Avl, Order).
still_odd_mid_row(Col, NC, _, _, _Order) -->
{Col>NC}, !.
still_odd_mid_row(Col, NC, Row, Avl, Order) --> [Tuple],
{Up is Row-1},
{Left is Col-1},
{Right is Col+1},
{elts([(Up,Left),(Up,Col),(Up,Right),(Row,Left),(Row,Col),(Row,Right),(Up,Left),(Up,Col),(Up,Right)], Avl, Tuple0, [])},
{var_order(Order, Tuple0, Tuple)},
{Col1 is Col+1},
still_odd_mid_row(Col1, NC, Row, Avl, Order).
elts([], _) --> [].
elts([Key|Keys], Avl) --> [Elt],
{getarr(Key, Avl, Elt)},
elts(Keys, Avl).
getarr(Key, Avl, Val) :-
avl_fetch(Key, Avl, Val), !.
getarr(_, _, 0).
var_order(best, % 56/101, WINNER
[A,B,C,D,E,F,G,H,I],
[A,B,C,G,H,I,D,E,F]).
draw(Cells, NC) :-
format('+~*c+\n', [NC,0'-]),
( fromto(Cells,S0,S,[]),
param(NC)
do ( for(_,1,NC),
fromto(S0,[C|S1],S1,S),
fromto(String,[Ch|T],T,"|\n")
do (C=:=0 -> Ch is " " ; Ch is "0")
),
format([0'||String], [])
),
format('+~*c+\n', [NC,0'-]).
end_of_file.
valid3x3(L1) :-
L1 = [A,B,C,D,E,F,G,H,I],
domain(L1, 0, 1),
S in {0,1,2,4,5,6,7,8,12,13},
10*E + A+B+C+D+F+G+H+I #= S,
A+B+C+D+F #< 5,
A+B+D+G+H #< 5,
B+C+F+H+I #< 5,
D+F+G+H+I #< 5,
symmetry(rot, L1, L2),
symmetry(rot, L2, L3),
symmetry(rot, L3, L4),
symmetry(mirror, L1, L5),
symmetry(mirror, L2, L6),
symmetry(mirror, L3, L7),
symmetry(mirror, L4, L8),
lex_chain([L2,L1]),
lex_chain([L3,L1]),
lex_chain([L4,L1]),
lex_chain([L5,L1]),
lex_chain([L6,L1]),
lex_chain([L7,L1]),
lex_chain([L8,L1]).
symmetry(rot,
[A,B,C,D,E,F,G,H,I],
[G,D,A,H,E,B,I,F,C]).
symmetry(mirror,
[A,B,C,D,E,F,G,H,I],
[C,B,A,F,E,D,I,H,G]).
symmetry_of(Pat1, Pat5) :-
( Pat1 = Pat4
; symmetry(rot, Pat1, Pat2),
( Pat2 = Pat4
; symmetry(rot, Pat2, Pat3),
( Pat3 = Pat4
; symmetry(rot, Pat3, Pat4)
)
)
),
( Pat4 = Pat5
; symmetry(mirror, Pat4, Pat5)
).
valid3x3_table(Order, T2) :- % 259 tuples
findall(L, valid3x3_variant(Order,L), T1),
sort(T1, T2).
valid3x3_variant(Order, L3) :-
valid3x3(L1),
labeling([], L1),
symmetry_of(L1, L2),
var_order(Order, L2, L3).