Download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
language Essence 1.3
 
given numDigits : int
given dimension : int
 
letting digit be domain int(0..9)
letting number be domain int(0..10**numDigits)
 
find grid : matrix indexed by [int(1..dimension), int(1..dimension)] of int(0..9)
branching on [grid]
 
 
$ the black blocks
given blackCells : set of (int, int)
such that
    forAll (row, col) in blackCells . grid[row,col] = 0
 
 
given acrossClueCoords : set of ( int   $ seq
                                , int   $ the row
                                , int   $ the starting column
                                , int   $ the ending column
                                )
letting acrossIndex be domain int([i[1] | i <- acrossClueCoords])
find across       : matrix indexed by [acrossIndex] of number
find acrossDigits : matrix indexed by [acrossIndex] of sequence (maxSize numDigits) of digit
such that
    forAll (seq, row, colStart, colEnd) in acrossClueCoords .
        acrossDigits[seq] = [ grid[row,col] | col : int(colStart..colEnd) ]
 
 
given downClueCoords   : set of ( int   $ seq
                                , int   $ the col
                                , int   $ the starting row
                                , int   $ the ending row
                                )
letting downIndex be domain int([i[1] | i <- downClueCoords])
find down         : matrix indexed by [downIndex  ] of number
find downDigits   : matrix indexed by [downIndex  ] of sequence (maxSize numDigits) of digit
such that
    forAll (seq, col, rowStart, rowEnd) in downClueCoords .
        downDigits[seq] = [ grid[row,col] | row : int(rowStart..rowEnd) ]
 
$ connecting digits to numbers
such that
    forAll n : acrossIndex .
        across[n] = sum (i,d) in acrossDigits[n] . (10**max([0,|acrossDigits[n]|-i])) * d,
    forAll n : downIndex .
        down[n] = sum (i,d) in downDigits[n] . (10**max([0,|downDigits[n]|-i])) * d
 
 
$ first digits are >1
$ this is probably implied, but having it just in case.
such that
    forAll n : acrossIndex . acrossDigits[n](1) > 0,
    forAll n : downIndex . downDigits[n](1) > 0
 
 
letting AD be new type enum {A, D}
letting CLUE be domain
    variant
        { is_constant    : int
        , is_square      : bool
        , is_prime       : bool
        , plus_constant  : (int, AD, int)
        , minus_constant : (int, AD, int)
        , times_constant : (int, AD, int)
        , div_constant   : (int, AD, int)
        , times          : (int, AD, int, AD)
        }
given clues : set of (AD, int, CLUE)
 
$ clues
such that
    forAll (targetKind, targetNum, clue) in clues .
        and(
            [ targetKind = A -> and(
                [ active(clue, is_constant) -> across[targetNum] = clue[is_constant]
                , active(clue, is_square  ) -> exists i : number . i**2 = across[targetNum]
                , active(clue, is_prime   ) -> and([ across[targetNum] % i != 0
                                                                     | i : number
                                                                     , i >= 2
                                                                     , i**2 <= across[targetNum]
                                                                     ])
                , active(clue, plus_constant) -> and(
                    [ clue[plus_constant ][2] = A -> across[targetNum] = across[clue[plus_constant ][1]] + clue[plus_constant ][3]
                    , clue[plus_constant ][2] = D -> across[targetNum] = down  [clue[plus_constant ][1]] + clue[plus_constant ][3]
                    ])
                , active(clue, minus_constant) -> and(
                    [ clue[minus_constant][2] = A -> across[targetNum] = across[clue[minus_constant][1]] - clue[minus_constant][3]
                    , clue[minus_constant][2] = D -> across[targetNum] = down  [clue[minus_constant][1]] - clue[minus_constant][3]
                    ])
                , active(clue, times_constant) -> and(
                    [ clue[times_constant][2] = A -> across[targetNum] = across[clue[times_constant][1]] * clue[times_constant][3]
                    , clue[times_constant][2] = D -> across[targetNum] = down  [clue[times_constant][1]] * clue[times_constant][3]
                    ])
                , active(clue, div_constant) -> and(
                    [ clue[div_constant  ][2] = A -> across[targetNum] = across[clue[div_constant  ][1]] / clue[div_constant  ][3]
                    , clue[div_constant  ][2] = D -> across[targetNum] = down  [clue[div_constant  ][1]] / clue[div_constant  ][3]
                    ])
                , active(clue, times) -> and(
                    [ (clue[times][2], clue[times][4]) = (A, A) -> across[targetNum] = across[clue[times][1]] * across[clue[times][3]]
                    , (clue[times][2], clue[times][4]) = (A, D) -> across[targetNum] = across[clue[times][1]] * down  [clue[times][3]]
                    , (clue[times][2], clue[times][4]) = (D, A) -> across[targetNum] = down  [clue[times][1]] * across[clue[times][3]]
                    , (clue[times][2], clue[times][4]) = (D, D) -> across[targetNum] = down  [clue[times][1]] * down  [clue[times][3]]
                    ])
                ])
 
            , targetKind = D -> and(
                [ active(clue, is_constant) -> down[targetNum] = clue[is_constant]
                , active(clue, is_square  ) -> exists i : number . i**2 = down[targetNum]
 
                , active(clue, is_prime   ) -> and([ down[targetNum] % i != 0
                                                                     | i : number
                                                                     , i >= 2
                                                                     , i**2 <= down[targetNum]
                                                                     ])
                , active(clue, plus_constant) -> and(
                    [ clue[plus_constant ][2] = A -> down[targetNum] = across[clue[plus_constant ][1]] + clue[plus_constant ][3]
                    , clue[plus_constant ][2] = D -> down[targetNum] = down  [clue[plus_constant ][1]] + clue[plus_constant ][3]
                    ])
                , active(clue, minus_constant) -> and(
                    [ clue[minus_constant][2] = A -> down[targetNum] = across[clue[minus_constant][1]] - clue[minus_constant][3]
                    , clue[minus_constant][2] = D -> down[targetNum] = down  [clue[minus_constant][1]] - clue[minus_constant][3]
                    ])
                , active(clue, times_constant) -> and(
                    [ clue[times_constant][2] = A -> down[targetNum] = across[clue[times_constant][1]] * clue[times_constant][3]
                    , clue[times_constant][2] = D -> down[targetNum] = down  [clue[times_constant][1]] * clue[times_constant][3]
                    ])
                , active(clue, div_constant) -> and(
                    [ clue[div_constant  ][2] = A -> down[targetNum] = across[clue[div_constant  ][1]] / clue[div_constant  ][3]
                    , clue[div_constant  ][2] = D -> down[targetNum] = down  [clue[div_constant  ][1]] / clue[div_constant  ][3]
                    ])
                , active(clue, times) -> and(
                    [ (clue[times][2], clue[times][4]) = (A, A) -> down[targetNum] = across[clue[times][1]] * across[clue[times][3]]
                    , (clue[times][2], clue[times][4]) = (A, D) -> down[targetNum] = across[clue[times][1]] * down  [clue[times][3]]
                    , (clue[times][2], clue[times][4]) = (D, A) -> down[targetNum] = down  [clue[times][1]] * across[clue[times][3]]
                    , (clue[times][2], clue[times][4]) = (D, D) -> down[targetNum] = down  [clue[times][1]] * down  [clue[times][3]]
                    ])
                ])
           ])