Download
/*
Fractions problem in Gecode.
Prolog benchmark problem (BProlog)
"""
Find distinct non-zero digits such that the following equation holds:
A D G
------ + ----- + ------ = 1
B*C E*F H*I
"""
Compare with the following models:
* MiniZinc: http://www.hakank.org/minizinc/fractions.mzn
* SICStus Prolog: http://www.hakank.org/sicstus/fractions.pl
* ECLiPSE: http://www.hakank.org/eclipse/fractions.ecl
This Gecode model was created by Hakan Kjellerstrand (hakank@gmail.com)
Also, see my Gecode page: http://www.hakank.org/gecode/ .
*/
// Licenced under CC-BY-4.0 : http://creativecommons.org/licenses/by/4.0/
#include <gecode/driver.hh>
#include <gecode/int.hh>
#include <gecode/minimodel.hh>
using namespace Gecode;
using std::cout;
using std::endl;
using std::setw;
using std::string;
class Fractions : public Script {
protected:
const static int n = 9;
IntVarArray Vars;
public:
Fractions(const Options& opt)
:
Vars(*this, n, 1, n)
{
IntVar
A(Vars[0]),
B(Vars[1]),
C(Vars[2]),
D(Vars[3]),
E(Vars[4]),
F(Vars[5]),
G(Vars[6]),
H(Vars[7]),
I(Vars[8]);
IntVar D1(*this, 1, 81);
IntVar D2(*this, 1, 81);
IntVar D3(*this, 1, 81);
distinct(*this, Vars);
rel(*this,
D1 == 10*B+C &&
D2 == 10*E+F &&
D3 == 10*H+I &&
A*D2*D3 + D*D1*D3 + G*D1*D2 == D1*D2*D3 &&
// break the symmetry
A*D2 >= D*D1 &&
D*D3 >= G*D2 &&
//redundant constraints
3*A >= D1 &&
3*G <= D2
);
// branching
branch(*this, Vars, INT_VAR_SIZE_MIN(), INT_VAL_MIN());
}
// Print solution
virtual void
print(std::ostream& os) const {
os << "Vars: " << Vars << endl;
}
// Constructor for cloning s
Fractions(bool share, Fractions& s) : Script(share,s) {
Vars.update(*this, share, s.Vars);
}
// Copy during cloning
virtual Space*
copy(bool share) {
return new Fractions(share,*this);
}
};
int
main(int argc, char* argv[]) {
Options opt("Fractions");
opt.solutions(0);
opt.parse(argc,argv);
Script::run<Fractions,DFS,Options>(opt);
return 0;
}