Download
//
// Copyright 2012 Hakan Kjellerstrand
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.ConstraintSolver;


public class KillerSudoku
{

  /**
   * Ensure that the sum of the segments
   * in cc == res
   *
   */
  public static void  calc(Solver solver,
                           int[] cc,
                           IntVar[,] x,
                           int res)
  {

    // sum the numbers
    int len = cc.Length / 2;
    solver.Add( (from i in Enumerable.Range(0, len)
                 select x[cc[i*2]-1,cc[i*2+1]-1]).ToArray().Sum() == res);
  }



  /**
   *
   * Killer Sudoku.
   *
   * http://en.wikipedia.org/wiki/Killer_Sudoku
   * """
   * Killer sudoku (also killer su doku, sumdoku, sum doku, addoku, or
   * samunamupure) is a puzzle that combines elements of sudoku and kakuro.
   * Despite the name, the simpler killer sudokus can be easier to solve
   * than regular sudokus, depending on the solver's skill at mental arithmetic;
   * the hardest ones, however, can take hours to crack.
   *
   * ...
   *
   * The objective is to fill the grid with numbers from 1 to 9 in a way that
   * the following conditions are met:
   *
   * - Each row, column, and nonet contains each number exactly once.
   * - The sum of all numbers in a cage must match the small number printed
   *   in its corner.
   * - No number appears more than once in a cage. (This is the standard rule
   *   for killer sudokus, and implies that no cage can include more
   *   than 9 cells.)
   *
   * In 'Killer X', an additional rule is that each of the long diagonals
   * contains each number once.
   * """
   *
   * Here we solve the problem from the Wikipedia page, also shown here
   * http://en.wikipedia.org/wiki/File:Killersudoku_color.svg
   *
   * The output is:
   *   2 1 5 6 4 7 3 9 8
   *   3 6 8 9 5 2 1 7 4
   *   7 9 4 3 8 1 6 5 2
   *   5 8 6 2 7 4 9 3 1
   *   1 4 2 5 9 3 8 6 7
   *   9 7 3 8 1 6 4 2 5
   *   8 2 1 7 3 9 5 4 6
   *   6 5 9 4 2 8 7 1 3
   *   4 3 7 1 6 5 2 8 9
   *
   * Also see http://www.hakank.org/or-tools/killer_sudoku.py
   * though this C# model has another representation of
   * the problem instance.
   *
   */
  private static void Solve()
  {

    Solver solver = new Solver("KillerSudoku");

    // size of matrix
    int cell_size = 3;
    IEnumerable<int> CELL = Enumerable.Range(0, cell_size);
    int n = cell_size*cell_size;
    IEnumerable<int> RANGE = Enumerable.Range(0, n);

    // For a better view of the problem, see
    //  http://en.wikipedia.org/wiki/File:Killersudoku_color.svg

    // hints
    //  sum, the hints
    // Note: this is 1-based
    int[][] problem =
      {
        new int[] { 3,  1,1,  1,2},
        new int[] {15,  1,3,  1,4, 1,5},
        new int[] {22,  1,6,  2,5, 2,6, 3,5},
        new int[] {4,   1,7,  2,7},
        new int[] {16,  1,8,  2,8},
        new int[] {15,  1,9,  2,9, 3,9, 4,9},
        new int[] {25,  2,1,  2,2, 3,1, 3,2},
        new int[] {17,  2,3,  2,4},
        new int[] { 9,  3,3,  3,4, 4,4},
        new int[] { 8,  3,6,  4,6, 5,6},
        new int[] {20,  3,7,  3,8, 4,7},
        new int[] { 6,  4,1,  5,1},
        new int[] {14,  4,2,  4,3},
        new int[] {17,  4,5,  5,5, 6,5},
        new int[] {17,  4,8,  5,7, 5,8},
        new int[] {13,  5,2,  5,3, 6,2},
        new int[] {20,  5,4,  6,4, 7,4},
        new int[] {12,  5,9,  6,9},
        new int[] {27,  6,1,  7,1, 8,1, 9,1},
        new int[] { 6,  6,3,  7,2, 7,3},
        new int[] {20,  6,6,  7,6, 7,7},
        new int[] { 6,  6,7,  6,8},
        new int[] {10,  7,5,  8,4, 8,5, 9,4},
        new int[] {14,  7,8,  7,9, 8,8, 8,9},
        new int[] { 8,  8,2,  9,2},
        new int[] {16,  8,3,  9,3},
        new int[] {15,  8,6,  8,7},
        new int[] {13,  9,5,  9,6, 9,7},
        new int[] {17,  9,8,  9,9}

      };


    int num_p = 29; // Number of segments

    //
    // Decision variables
    //
    IntVar[,] x =  solver.MakeIntVarMatrix(n, n, 0, 9, "x");
    IntVar[] x_flat = x.Flatten();

    //
    // Constraints
    //

    //
    // The first three constraints is the same as for sudokus.cs
    //
    //  alldifferent rows and columns
    foreach(int i in RANGE) {
      // rows
      solver.Add( (from j in RANGE
                   select x[i,j]).ToArray().AllDifferent());

      // cols
      solver.Add( (from j in RANGE
                   select x[j,i]).ToArray().AllDifferent());

    }

    // cells
    foreach(int i in CELL) {
      foreach(int j in CELL) {
        solver.Add( (from di in CELL
                     from dj in CELL
                     select x[i*cell_size+di, j*cell_size+dj]
                     ).ToArray().AllDifferent());
      }
    }


    // Sum the segments and ensure alldifferent
    for(int i = 0; i < num_p; i++) {
      int[] segment = problem[i];

      // Remove the sum from the segment
      int[] s2 = new int[segment.Length-1];
      for(int j = 1; j < segment.Length; j++) {
        s2[j-1] = segment[j];
      }

      // sum this segment
      calc(solver, s2, x, segment[0]);

      // all numbers in this segment must be distinct
      int len = segment.Length / 2;
      solver.Add( (from j in Enumerable.Range(0, len)
                   select x[s2[j*2]-1, s2[j*2+1]-1])
                  .ToArray().AllDifferent());
    }

    //
    // Search
    //
    DecisionBuilder db = solver.MakePhase(x_flat,
                                          Solver.INT_VAR_DEFAULT,
                                          Solver.INT_VALUE_DEFAULT);

    solver.NewSearch(db);

    while (solver.NextSolution()) {
      for(int i = 0; i < n; i++) {
        for(int j = 0; j < n; j++) {
          int v = (int)x[i,j].Value();
          if (v > 0) {
            Console.Write(v + " ");
          } else {
            Console.Write("  ");
          }
        }
        Console.WriteLine();
      }
    }

    Console.WriteLine("\nSolutions: {0}", solver.Solutions());
    Console.WriteLine("WallTime: {0}ms", solver.WallTime());
    Console.WriteLine("Failures: {0}", solver.Failures());
    Console.WriteLine("Branches: {0} ", solver.Branches());

    solver.EndSearch();

  }


  public static void Main(String[] args)
  {

    Solve();
  }
}