Download
/*
Crossfigure in Comet.
CSPLib problem 21
http://www.csplib.org/Problems/prob021
"""
Crossfigures are the numerical equivalent of crosswords. You have a grid and some
clues with numerical answers to place on this grid. Clues come in several different
forms (for example: Across 1. 25 across times two, 2. five dozen, 5. a square number,
10. prime, 14. 29 across times 21 down ...).
"""
Also, see
http://en.wikipedia.org/wiki/Cross-figure
William Y. Sit: "On Crossnumber Puzzles and The Lucas-Bonaccio Farm 1998
http://scisun.sci.ccny.cuny.edu/~wyscc/CrossNumber.pdf
Bill Williams: Crossnumber Puzzle, The Little Pigley Farm
http://jig.joelpomerantz.com/fun/dogsmead.html
This Comet model was created by Hakan Kjellerstrand (hakank@gmail.com)
Also, see my Comet page: http://www.hakank.org/comet
*/
// Licenced under CC-BY-4.0 : http://creativecommons.org/licenses/by/4.0/
/*
This model was inspired by the ECLiPSe model written by Warwick Harvey:
http://www.csplib.org/Problems/prob021/models
Data from
http://thinks.com/crosswords/xfig.htm.
This problem is 001 from http://thinks.com/crosswords/xfig.htm
("X" is the blackbox and is fixed to the value of 0)
1 2 3 4 5 6 7 8 9
---------------------------
1 2 _ 3 X 4 _ 5 6 1
7 _ X 8 _ _ X 9 _ 2
_ X 10 _ X 11 12 X _ 3
13 14 _ _ X 15 _ 16 _ 4
X _ X X X X X _ X 5
17 _ 18 19 X 20 21 _ 22 6
_ X 23 _ X 24 _ X _ 7
25 26 X 27 _ _ X 28 _ 8
29 _ _ _ X 30 _ _ _ 9
The answer is
1608 9183
60 201 42
3 72 14 1
5360 2866
3 4
4556 1156
9 67 16 8
68 804 48
1008 7332
Solutions:
MiniZinc and Gecode/fz solves the problem in about 8 seconds.
ECLiPSe/ic: 35 seconds
MiniZinc/fdmip in 14 seconds.
Comet: 1 second.
*/
import cotfd;
int t0 = System.getCPUTime();
int n = 9;
range D = 0..9999; // the max length of the numbers in this problem is 4
Solver<CP> m();
var<CP>{int} M[1..n, 1..n](m, 0..9);
var<CP>{int} A1(m, D);
var<CP>{int} A4(m, D);
var<CP>{int} A7(m, D);
var<CP>{int} A8(m, D);
var<CP>{int} A9(m, D);
var<CP>{int} A10(m, D);
var<CP>{int} A11(m, D);
var<CP>{int} A13(m, D);
var<CP>{int} A15(m, D);
var<CP>{int} A17(m, D);
var<CP>{int} A20(m, D);
var<CP>{int} A23(m, D);
var<CP>{int} A24(m, D);
var<CP>{int} A25(m, D);
var<CP>{int} A27(m, D);
var<CP>{int} A28(m, D);
var<CP>{int} A29(m, D);
var<CP>{int} A30(m, D);
var<CP>{int} D1(m, D);
var<CP>{int} D2(m, D);
var<CP>{int} D3(m, D);
var<CP>{int} D4(m, D);
var<CP>{int} D5(m, D);
var<CP>{int} D6(m, D);
var<CP>{int} D10(m, D);
var<CP>{int} D12(m, D);
var<CP>{int} D14(m, D);
var<CP>{int} D16(m, D);
var<CP>{int} D17(m, D);
var<CP>{int} D18(m, D);
var<CP>{int} D19(m, D);
var<CP>{int} D20(m, D);
var<CP>{int} D21(m, D);
var<CP>{int} D22(m, D);
var<CP>{int} D26(m, D);
var<CP>{int} D28(m, D);
//
// Convert array <-> number
//
function void toNum10(var<CP>{int}[] x, var<CP>{int} num) {
Solver<CP> m = x[1].getSolver();
int start = x.getLow();
int end = x.getHigh();
m.post(num == sum(i in start..end)
10^(end-i)*x[i]
);
}
/*
across(Matrix, Across, Len, Row, Col)
Constrains 'Across' to be equal to the number represented by the
'Len' digits starting at position (Row, Col) of the array 'Matrix'
and proceeding across.
*/
function void across(var<CP>{int}[,] Matrix, var<CP>{int} Across, int Len, int Row, int Col) {
Solver<CP> m = Matrix[1,1].getSolver();
var<CP>{int} tmp[1..Len](m, 0..9999);
toNum10(tmp, Across);
forall(i in 0..Len-1) {
m.post(Matrix[Row,Col+i] == tmp[i+1]);
}
}
/*
down(Matrix, Down, Len, Row, Col):
Constrains 'Down' to be equal to the number represented by the
'Len' digits starting at position (Row, Col) of the array 'Matrix'
and proceeding down.
*/
function void down(var<CP>{int}[,] Matrix, var<CP>{int} Across, int Len, int Row, int Col) {
Solver<CP> m = Matrix[1,1].getSolver();
var<CP>{int} tmp[1..Len](m, 0..9999);
toNum10(tmp, Across);
forall(i in 0..Len-1) {
m.post(Matrix[Row+i,Col] == tmp[i+1]);
}
}
/*
x is a prime (is not needed, since I found m.inside)
*/
function void is_prime(Solver<CP> m, var<CP>{int} x) {
forall(i in 2..x.getMax() / 2)
m.post(i != x => x % i > 0);
}
//
// x is a square (is not needed, since I found m.inside)
//
function void square(Solver<CP> m, var<CP>{int} x) {
var<CP>{int} tmp(m, 0..x.getSize());
m.post(x == tmp^2);
}
Integer num_solutions(0);
exploreall<m> {
// Set up the constraints between the matrix elements and the
// clue numbers.
across(M, A1, 4, 1, 1);
across(M, A4, 4, 1, 6);
across(M, A7, 2, 2, 1);
across(M, A8, 3, 2, 4);
across(M, A9, 2, 2, 8);
across(M, A10, 2, 3, 3);
across(M, A11, 2, 3, 6);
across(M, A13, 4, 4, 1);
across(M, A15, 4, 4, 6);
across(M, A17, 4, 6, 1);
across(M, A20, 4, 6, 6);
across(M, A23, 2, 7, 3);
across(M, A24, 2, 7, 6);
across(M, A25, 2, 8, 1);
across(M, A27, 3, 8, 4);
across(M, A28, 2, 8, 8);
across(M, A29, 4, 9, 1);
across(M, A30, 4, 9, 6);
down(M, D1, 4, 1, 1);
down(M, D2, 2, 1, 2);
down(M, D3, 4, 1, 4);
down(M, D4, 4, 1, 6);
down(M, D5, 2, 1, 8);
down(M, D6, 4, 1, 9);
down(M, D10, 2, 3, 3);
down(M, D12, 2, 3, 7);
down(M, D14, 3, 4, 2);
down(M, D16, 3, 4, 8);
down(M, D17, 4, 6, 1);
down(M, D18, 2, 6, 3);
down(M, D19, 4, 6, 4);
down(M, D20, 4, 6, 6);
down(M, D21, 2, 6, 7);
down(M, D22, 4, 6, 9);
down(M, D26, 2, 8, 2);
down(M, D28, 2, 8, 8);
// Set up the clue constraints.
// Across
// 1 27 across times two
// 4 4 down plus seventy-one
// 7 18 down plus four
// 8 6 down divided by sixteen
// 9 2 down minus eighteen
// 10 Dozen in six gross
// 11 5 down minus seventy
// 13 26 down times 23 across
// 15 6 down minus 350
// 17 25 across times 23 across
// 20 A square number
// 23 A prime number
// 24 A square number
// 25 20 across divided by seventeen
// 27 6 down divided by four
// 28 Four dozen
// 29 Seven gross
// 30 22 down plus 450
m.post(A1 == 2 * A27);
m.post(A4 == D4 + 71);
m.post(A7 == D18 + 4);
m.post(A8 == D6 / 16);
m.post(A9 == D2 - 18);
m.post(A10 == 6 * 144 / 12);
m.post(A11 == D5 - 70);
m.post(A13 == D26 * A23);
m.post(A15 == D6 - 350);
m.post(A17 == A25 * A23);
square(m, A20);
is_prime(m, A23);
square(m, A24);
m.post(A25 == A20 / 17);
m.post(A27 == D6 / 4);
m.post(A28 == 4 * 12);
m.post(A29 == 7 * 144);
m.post(A30 == D22 + 450);
// Down
//
// 1 1 across plus twenty-seven
// 2 Five dozen
// 3 30 across plus 888
// 4 Two times 17 across
// 5 29 across divided by twelve
// 6 28 across times 23 across
// 10 10 across plus four
// 12 Three times 24 across
// 14 13 across divided by sixteen
// 16 28 down times fifteen
// 17 13 across minus 399
// 18 29 across divided by eighteen
// 19 22 down minus ninety-four
// 20 20 across minus nine
// 21 25 across minus fifty-two
// 22 20 down times six
// 26 Five times 24 across
// 28 21 down plus twenty-seven
m.post(D1 == A1 + 27);
m.post(D2 == 5 * 12);
m.post(D3 == A30 + 888);
m.post(D4 == 2 * A17);
m.post(D5 == A29 / 12);
m.post(D6 == A28 * A23);
m.post(D10 == A10 + 4);
m.post(D12 == A24 * 3);
m.post(D14 == A13 / 16);
m.post(D16 == 15 * D28);
m.post(D17 == A13 - 399);
m.post(D18 == A29 / 18);
m.post(D19 == D22 - 94);
m.post(D20 == A20 - 9);
m.post(D21 == A25 - 52);
m.post(D22 == 6 * D20);
m.post(D26 == 5 * A24);
m.post(D28 == D21 + 27);
// Fix the black boxes
m.post(M[1,5] == 0);
m.post(M[2,3] == 0);
m.post(M[2,7] == 0);
m.post(M[3,2] == 0);
m.post(M[3,5] == 0);
m.post(M[3,8] == 0);
m.post(M[4,5] == 0);
m.post(M[5,1] == 0);
m.post(M[5,3] == 0);
m.post(M[5,4] == 0);
m.post(M[5,5] == 0);
m.post(M[5,6] == 0);
m.post(M[5,7] == 0);
m.post(M[5,9] == 0);
m.post(M[6,5] == 0);
m.post(M[7,2] == 0);
m.post(M[7,5] == 0);
m.post(M[7,8] == 0);
m.post(M[8,3] == 0);
m.post(M[8,7] == 0);
m.post(M[9,5] == 0);
} using {
labelFF(m);
num_solutions := num_solutions + 1;
forall(i in 1..n) {
forall(j in 1..n) {
cout << M[i,j] << " ";
}
cout << endl;
}
cout << endl;
}
cout << "\nnum_solutions: " << num_solutions << endl;
int t1 = System.getCPUTime();
cout << "time: " << (t1-t0) << endl;
cout << "#choices = " << m.getNChoice() << endl;
cout << "#fail = " << m.getNFail() << endl;
cout << "#propag = " << m.getNPropag() << endl;