Download
%-----------------------------------------------------------------------------%
% Partitioning problem
%
% Guido Tack
% 05/2009
%
%
% Partition 2*n numbers into two groups, each of size n, such that
% their sums are equal and the sums of their squares are equal.
%
include "globals.mzn";
%-----------------------------------------------------------------------------%
% Instance
%-----------------------------------------------------------------------------%
n = 32;
%-----------------------------------------------------------------------------%
% Model
%-----------------------------------------------------------------------------%
int: n;
array[1..n] of var 1..2*n: x;
array[1..n] of var 1..2*n: y;
constraint true
% Break symmetries by ordering numbers in each group
/\ forall (i in 2..n) (x[i-1] < x[i] /\ y[i-1] < y[i])
% Break symmetries by ordering the groups
/\ x[1] < y[1]
% Partition the numbers
/\ (alldifferent(x++y)) :: bounds
% The sums are equal
/\ sum (x) = 2*n*(2*n+1) div 4
/\ sum (y) = 2*n*(2*n+1) div 4
% The sums of the squares are equal
/\ let {
array[1..n] of var 1..4*n*n: sx,
array[1..n] of var 1..4*n*n: sy
} in
forall (i in 1..n) (sx[i]=x[i]*x[i] /\ sy[i] = y[i]*y[i])
/\ sum (sx) = 2*n*(2*n+1)*(4*n+1) div 12
/\ sum (sy) = 2*n*(2*n+1)*(4*n+1) div 12
;
solve ::int_search(x++y,first_fail,indomain_min,complete) satisfy;
output
["x = ",show(x),"\n","y = ",show(y),"\n",
"sum = ",show(2*n*(2*n+1) div 4),"\n",
"sum of squares = ", show(2*n*(2*n+1)*(4*n+1) div 12), "\n"
];