Download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
%
% Crossfigure problem in MiniZinc.
%
% CSPLib problem 21
% """
% Crossfigures are the numerical equivalent of crosswords. You have a grid and some
% clues with numerical answers to place on this grid. Clues come in several different
% forms (for example: Across 1. 25 across times two, 2. five dozen, 5. a square number,
% 10. prime, 14. 29 across times 21 down ...).
% """
%
% Also, see
%
% William Y. Sit: "On Crossnumber Puzzles and The Lucas-Bonaccio Farm 1998
% http://scisun.sci.ccny.cuny.edu/~wyscc/CrossNumber.pdf
%
% Bill Williams: Crossnumber Puzzle, The Little Pigley Farm
 
%
% This MiniZinc model was created by Hakan Kjellerstrand, hakank@bonetmail.com
% See also my MiniZinc page: http://www.hakank.org/minizinc
%
 
% Licenced under CC-BY-4.0 : http://creativecommons.org/licenses/by/4.0/
 
%
% This model was inspired by the ECLiPSe model written by Warwick Harvey:
%
%
% Data from
%
% This problem is 001 from http://thinks.com/crosswords/xfig.htm
% ("X" is the blackbox and is fixed to the value of 0)
%
% 1  2  3  4  5  6  7  8  9
% ---------------------------
% 1  2  _  3  X  4  _  5  6  % 1
% 7  _  X  8  _  _  X  9  _  % 2
% _  X  10 _  X  11 12 X  _  % 3
% 13 14 _  _  X  15 _  16 _  % 4
% X  _  X  X  X  X  X  _  X  % 5
% 17 _  18 19 X  20 21 _ 22  % 6
% _  X  23 _  X  24 _  X  _  % 7
% 25 26 X  27 _  _  X  28 _  % 8
% 29 _  _  _  X  30 _  _  _  % 9
 
%
% The answer is
%  1608 9183
%  60 201 42
%  3 72 14 1
%  5360 2866
%   3     4
%  4556 1156
%  9 67 16 8
%  68 804 48
%  1008 7332
 
% Solutions:
% MiniZinc and Gecode/fz solves the problem in about 8 seconds.
% ECLiPSe/ic: 35 seconds
% MiniZinc/fdmip in 14 seconds.
%
 
 
int: n = 9;
array[1..n, 1..n] of var 0..9: M;
 
set of int: D = 0..9999; % the max length of the numbers in this problem is 4
var D: A1;
var D: A4;
var D: A7;
var D: A8;
var D: A9;
var D: A10;
var D: A11;
var D: A13;
var D: A15;
var D: A17;
var D: A20;
var D: A23;
var D: A24;
var D: A25;
var D: A27;
var D: A28;
var D: A29;
var D: A30;
 
var D: D1;
var D: D2;
var D: D3;
var D: D4;
var D: D5;
var D: D6;
var D: D10;
var D: D12;
var D: D14;
var D: D16;
var D: D17;
var D: D18;
var D: D19;
var D: D20;
var D: D21;
var D: D22;
var D: D26;
var D: D28;
 
 
%
% across(Matrix, Across, Len, Row, Col)
%   Constrains 'Across' to be equal to the number represented by the
%   'Len' digits starting at position (Row, Col) of the array 'Matrix'
%   and proceeding across.
%
predicate across(array[int, int] of var D: Matrix, var D: Across, int: Len, int: Row, int: Col) =
   let {
     array[1..Len] of var D: tmp
   }
   in
   toNum10(tmp, Across)
   /\
   forall(i in 0..Len-1) (
 
       Matrix[Row,Col+i] = tmp[i+1]
   )
;
 
%
% down(Matrix, Down, Len, Row, Col):
%   Constrains 'Down' to be equal to the number represented by the
%   'Len' digits starting at position (Row, Col) of the array 'Matrix'
%   and proceeding down.
%
predicate down(array[int,int] of var D: Matrix, var D: Down, int: Len, int: Row, int: Col) =
   let {
     array[1..Len] of var D: tmp
   }
   in
   toNum10(tmp, Down)
   /\
   forall(i in 0..Len-1) (
      Matrix[Row+i,Col] = tmp[i+1]
   )
;
 
 
%
% converts a number <-> array
%
predicate toNum10(array[int] of var D: a, var D: n) =
          let { int: len = length(a) }
          in
          n = sum(i in 1..len) (
            ceil(pow(10.0, int2float(len-i))) * a[i]
          )
          /\ forall(i in 1..len) (a[i] >= 0)
;
 
 
%
% x is a square
%
predicate square(var D: x) =
   exists(y in D) (
      y*y = x
   )
;
 
 
%
% very simple primality test
%
predicate is_prime(var int: x) =
   forall(i in 2..ceil(sqrt(9999.0))) (
        (i < x) -> (x mod i > 0)
   )
;
 
 
solve :: int_search(
         [M[i,j] | i,j in 1..n] ++
         [A1,A4,A7,A8,A9,A10,A11,A13,A15,A17,A20,A23,A24,A25,A27,A28,A29,A30,
         D1,D2,D3,D4,D5,D6,D10,D12,D14,D16,D17,D18,D19,D20,D21,D22,D26,D28],
         occurrence,
         indomain_min,
         complete
         )
     satisfy;
 
 
constraint
 
   % Set up the constraints between the matrix elements and the
   % clue numbers.
   across(M, A1, 4, 1, 1)  /\
   across(M, A4, 4, 1, 6)  /\
   across(M, A7, 2, 2, 1)  /\
   across(M, A8, 3, 2, 4)  /\
   across(M, A9, 2, 2, 8)  /\
   across(M, A10, 2, 3, 3) /\
   across(M, A11, 2, 3, 6) /\
   across(M, A13, 4, 4, 1) /\
   across(M, A15, 4, 4, 6) /\
   across(M, A17, 4, 6, 1) /\
   across(M, A20, 4, 6, 6) /\
   across(M, A23, 2, 7, 3) /\
   across(M, A24, 2, 7, 6) /\
   across(M, A25, 2, 8, 1) /\
   across(M, A27, 3, 8, 4) /\
   across(M, A28, 2, 8, 8) /\
   across(M, A29, 4, 9, 1) /\
   across(M, A30, 4, 9, 6) /\
 
   down(M, D1, 4, 1, 1)  /\
   down(M, D2, 2, 1, 2)  /\
   down(M, D3, 4, 1, 4)  /\
   down(M, D4, 4, 1, 6)  /\
   down(M, D5, 2, 1, 8)  /\
   down(M, D6, 4, 1, 9)  /\
   down(M, D10, 2, 3, 3) /\
   down(M, D12, 2, 3, 7) /\
   down(M, D14, 3, 4, 2) /\
   down(M, D16, 3, 4, 8) /\
   down(M, D17, 4, 6, 1) /\
   down(M, D18, 2, 6, 3) /\
   down(M, D19, 4, 6, 4) /\
   down(M, D20, 4, 6, 6) /\
   down(M, D21, 2, 6, 7) /\
   down(M, D22, 4, 6, 9) /\
   down(M, D26, 2, 8, 2) /\
   down(M, D28, 2, 8, 8) /\
 
 
   % Set up the clue constraints.
%  Across
%  1 27 across times two
%  4 4 down plus seventy-one
%  7 18 down plus four
%  8 6 down divided by sixteen
%  9 2 down minus eighteen
% 10 Dozen in six gross
% 11 5 down minus seventy
% 13 26 down times 23 across
% 15 6 down minus 350
% 17 25 across times 23 across
% 20 A square number
% 23 A prime number
% 24 A square number
% 25 20 across divided by seventeen
% 27 6 down divided by four
% 28 Four dozen
% 29 Seven gross
% 30 22 down plus 450
 
   A1 = 2 * A27         /\
   A4 = D4 + 71         /\
   A7 = D18 + 4         /\
   A8 = D6 div 16       /\
   A9 = D2 - 18         /\
   A10 = 6 * 144 div 12 /\
   A11 = D5 - 70        /\
   A13 = D26 * A23      /\
   A15 = D6 - 350       /\
   A17 = A25 * A23      /\
   square(A20)          /\
   is_prime(A23)        /\
   square(A24)          /\
   A25 = A20 div 17     /\
   A27 = D6 div 4       /\
   A28 = 4 * 12         /\
   A29 = 7 * 144        /\
   A30 = D22 + 450      /\
 
   % Down
   %
   %  1 1 across plus twenty-seven
   %  2 Five dozen
   %  3 30 across plus 888
   %  4 Two times 17 across
   %  5 29 across divided by twelve
   %  6 28 across times 23 across
   % 10 10 across plus four
   % 12 Three times 24 across
   % 14 13 across divided by sixteen
   % 16 28 down times fifteen
   % 17 13 across minus 399
   % 18 29 across divided by eighteen
   % 19 22 down minus ninety-four
   % 20 20 across minus nine
   % 21 25 across minus fifty-two
   % 22 20 down times six
   % 26 Five times 24 across
   % 28 21 down plus twenty-seven
 
   D1 = A1 + 27     /\
   D2 = 5 * 12      /\
   D3 = A30 + 888   /\
   D4 = 2 * A17     /\
   D5 = A29 div 12  /\
   D6 = A28 * A23   /\
   D10 = A10 + 4    /\
   D12 = A24 * 3    /\
   D14 = A13 div 16 /\
   D16 = 15 * D28   /\
   D17 = A13 - 399  /\
   D18 = A29 div 18 /\
   D19 = D22 - 94   /\
   D20 = A20 - 9    /\
   D21 = A25 - 52   /\
   D22 = 6 * D20    /\
   D26 = 5 * A24    /\
   D28 = D21 + 27
 
 
   % Fix the blackboxes
   /\
   M[1,5] = 0 /\
   M[2,3] = 0 /\
   M[2,7] = 0 /\
   M[3,2] = 0 /\
   M[3,5] = 0 /\
   M[3,8] = 0 /\
   M[4,5] = 0 /\
   M[5,1] = 0 /\
   M[5,3] = 0 /\
   M[5,4] = 0 /\
   M[5,5] = 0 /\
   M[5,6] = 0 /\
   M[5,7] = 0 /\
   M[5,9] = 0 /\
   M[6,5] = 0 /\
   M[7,2] = 0 /\
   M[7,5] = 0 /\
   M[7,8] = 0 /\
   M[8,3] = 0 /\
   M[8,7] = 0 /\
   M[9,5] = 0
;
 
 
output [
 show([A1,A4,A7,A8,A9,A10,A11,A13,A15,A17,A20,A23,A24,A25,A27,A28,A29,A30,
       D1,D2,D3,D4,D5,D6,D10,D12,D14,D16,D17,D18,D19,D20,D21,D22,D26,D28]), "\n",
] ++
[
  if j = 1 then "\n" else " " endif ++
    show(M[i,j])
  | i,j  in 1..n
] ++ ["\n"];