Download
/*******************************************************************************
* OscaR is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 2.1 of the License, or
* (at your option) any later version.
*
* OscaR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License along with OscaR.
* If not, see http://www.gnu.org/licenses/lgpl-3.0.en.html
******************************************************************************/
package oscar.examples.cp.hakank
import oscar.cp.modeling._
import oscar.cp.core._
import scala.io.Source._
import scala.math._
import Array._
/*
Golomb Golomb ruler in Oscar.
CSPLib problem 6
http://www.csplib.org/Problems/prob006
"""
These problems are said to have many practical applications including
sensor placements for x-ray crystallography and radio astronomy. A
Golomb ruler may be defined as a set of m integers
0 = a_1 < a_2 < ... < a_m such that the m(m-1)/2 differences
a_j - a_i, 1 <= i < j <= m are distinct. Such a ruler is said to contain
m marks and is of length a_m. The objective is to find optimal (minimum
length) or near optimal rulers.
Note that a symmetry can be removed by adding the constraint that
a_2 - a_1 < a_m - a_{m-1}, the first difference is less than the last.
"""
Also see:
* http://mathworld.wolfram.com/GolombRuler.html
* http://en.wikipedia.org/wiki/Golomb_ruler
* http://www.research.ibm.com/people/s/shearer/grule.html
@author Hakan Kjellerstrand hakank@gmail.com
http://www.hakank.org/oscar/
*/
object GolombRuler {
def increasing(cp: CPSolver, y: Array[CPIntVar]) = {
for (i <- 1 until y.length) {
cp.add(y(i-1) <= y(i), Strong)
}
}
def main(args: Array[String]) {
val cp = CPSolver()
//
// data
//
var m = 8
if (args.length > 0) {
m = args(0).toInt
}
val n = m*m
//
// variables
//
val mark = Array.fill(m)(CPIntVar(0 to n)(cp))
val differences = for{i <- 0 until m; j <- i+1 until m} yield mark(j)-mark(i)
//
// constraints
//
var numSols = 0
cp.minimize(mark(m-1)) subjectTo {
cp.add(allDifferent(mark), Strong)
cp.add(allDifferent(differences), Strong)
increasing(cp, mark)
// symmetry breaking
cp.add(mark(0) == 0)
cp.add(mark(1)-mark(0) < mark(m-1) - mark(m-2))
// ensure positive differences
// (Cred to Pierre Schaus.)
differences.foreach(d => cp.add(d > 0))
} search {
binaryStatic(mark) // 756 backtracks for m=8
} onSolution {
println("\nSolution:")
print("mark: " + mark.mkString(""))
println("\ndifferences: " + differences.mkString(""))
println()
numSols += 1
}
println(cp.start())
}
}