Download
from Numberjack import *
def get_model(M, N):
X = [Variable(1, N * M - (i + 2) * (M - 1)) for i in range(N)]
model = Model(
AllDiff([X[i] + ((i + 2) * j) for j in range(M) for i in range(N)]),
X[0] > X[1] # Break symmetry
)
return X, model
def solve(param):
X, model = get_model(param['M'], param['N'])
solver = model.load(param['solver'])
solver.setVerbosity(param['verbose'])
solver.setTimeLimit(param['tcutoff'])
out = ''
if param['all'] and param['solver'] == 'Mistral':
solver.startNewSearch()
langford_number = 0
while solver.getNextSolution() == SAT:
out += printLangford(param['M'], X) + '\n'
langford_number += 1
out += ('L('+str(param['M'])+','+str(param['N'])+') = '+str(langford_number)+'\n')
else:
if solver.solve():
out += printLangford(param['M'], X) + '\n'
else:
out += 'No solution\n'
out += ('Nodes: ' + str(solver.getNodes()))
return out
def printLangford(M, X):
N = len(X)
sequence = [0]*(M*N)
for i in range(N):
for j in range(M):
sequence[X[i].get_value()+j*(i+2)-1] = (i+1)
return str(sequence)
default = {'solver': 'Mistral', 'N': 7, 'M': 2, 'verbose': 0, 'tcutoff': 30, 'all': 0}
if __name__ == '__main__':
param = input(default)
print solve(param)