Download
%
% Quasigroup problem in MiniZinc.
%
% This model is a translation of the EssencePrime model quasiGroup5Idempotent.cm
% from the Minion Translator examples.
% """
% The quasiGroup existence problem (CSP lib problem 3)
%
% An m order quasigroup is an mxm multiplication table of integers 1..m,
% where each element occurrs exactly once in each row and column and certain
% multiplication axioms hold (in this case, we want axiom 5 to hold).
% """
% See
% http://www.dcs.st-and.ac.uk/~ianm/CSPLib/prob/prob003/spec.html:
% This MiniZinc model was created by Hakan Kjellerstrand, hakank@gmail.com
% See also my MiniZinc page: http://www.hakank.org/minizinc/
% Licenced under CC-BY-4.0 : http://creativecommons.org/licenses/by/4.0/
include "globals.mzn";
int: n = 7;
set of int: nDomain = 0..n-1;
array[nDomain, nDomain] of var nDomain: quasiGroup;
solve :: int_search([quasiGroup[row, col] | row, col in nDomain],
first_fail, indomain_min, complete) satisfy;
constraint
% All rows have to be different
forall(row in nDomain) (
all_different([quasiGroup[row,col] | col in nDomain])
)
/\
% All columns have to be different
forall(col in nDomain) (
all_different([quasiGroup[row,col] | row in nDomain ])
)
/\
% ((i*j)*j)*j = a
forall(i in nDomain) (
forall(j in nDomain) (
quasiGroup[quasiGroup[quasiGroup[i,j],j],j] = i
)
)
/\
% Idempotency
forall(i in nDomain) (
quasiGroup[i,i] = i
)
/\
% Implied (from Colton,Miguel 01)
forall(i in nDomain) (
forall(j in nDomain) (
(quasiGroup[i,j]=i) <-> (quasiGroup[j,i]=i)
)
)
/\
% Symmetry-breaking constraints
forall(i in nDomain) (
quasiGroup[i,n-1] + 2 >= i
)
;
output [
if col = 0 then "\n" else " " endif ++
show(quasiGroup[row, col])
| row, col in nDomain
] ++ ["\n"];