Download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/*
 
  Set partition problem in ECLiPSe.
 
  Problem formulation from
  """
   This is a partition problem.
   Given the set S = {1, 2, ..., n},
   it consists in finding two sets A and B such that:
   <ul>
   <li>A U B = S,</li>
   <li>|A| = |B|,</li>
   <li>sum(A) = sum(B),</li>
   <li>sum_squares(A) = sum_squares(B).</li>
   </ul>
  """
 
  Compare with the following models:
 
 
  Model created by Hakan Kjellerstrand, hakank@gmail.com
  See also my ECLiPSe page: http://www.hakank.org/eclipse/
 
*/
 
% Licenced under CC-BY-4.0 : http://creativecommons.org/licenses/by/4.0/
 
:-lib(ic).
:-lib(ic_sets).
:-lib(ic_search).
:-lib(listut).
 
 
 
% find all (7) solutions for N = 16.
go :-
        N = 16,
        NumSets = 2,
        set_partition(N, NumSets), nl,fail.
 
%
% check for a solution between N = 17 and 32
%
go2 :-
        ic : '::'(N,17..32),
        indomain(N),
        NumSets = 2,
        writeln(n:N),
        set_partition(N, NumSets).
 
 
%
% Here we find the minimal N and NumSets for
% a solution to the problem.
%
go3 :-
        ic: '::'(N, 2..20),
        ic: '::'(NumSets, 3..9),
        indomain(N),
        indomain(NumSets),
        writeln([n:N,num_sets:NumSets]),
        set_partition(N,NumSets).
 
         
 
set_partition(N,NumSets) :-
 
 
        % sanity check
        Mod is N mod NumSets,
        ( Mod \= 0 ->
              printf("Error: %d is not a multiple of %d\n", [NumSets,N]),
              fail
        ;
              true
        ),
               
 
        % list of sets
        intsets(A,NumSets,1,N),
 
        % sums
        dim(Sums,[NumSets]),
        N2 is N*N,
        ic: '::'(Sums,0..N2),
 
        % squared sums
        dim(SumSquared,[NumSets]),
        N4 is N2*N2,
        ic :'::'(SumSquared,0..N4),
 
 
        % create the universe for partition_set
        % and the weights for weight/3 below.
        dim(Weights,[N]),
        dim(Weights2,[N]),
        ( for(I,1,N), foreach(L,Universe), foreacharg(W, Weights),
          foreacharg(W2, Weights2) do
              L is I,
              W is I,
              W2 is I*I
        ),
 
        % same number of elements
        partition_set(A, Universe),
 
        % all sets must have the same cardinality
        same_cardinality(A),
 
        % % calculate sums and squared sums for each partition
        % ( for(I,1,NumSets), param(A,Sums,SumSquared,N) do
        %      listut:nth1(I,A,AI),
        %      ( for(J,1,N),
        %        fromto(0,In1,In1+J*InSet,SumsTmp),
        %        fromto(0,In2,In2+J*J*InSet,SumSquaredTmp),
        %        param(AI) do
        %            InSet #= (J in AI)
        %      ),
        %      Sums[I] #= eval(SumsTmp),
        %      SumSquared[I] #= eval(SumSquaredTmp)
        % ),
 
        % Calculate sums and squared sums, using weight/3 instead
        % This is faster than the one above.
        ( for(I,1,NumSets), param(A,Weights,Weights2,Sums,SumSquared) do
              listut:nth1(I,A,AI),
              Sums[I] #= weight(AI,Weights),
              SumSquared[I] #= weight(AI,Weights2)
        ),
         
        % all sums and squared sums must be equal
        ( for(I,1,NumSets-1), param(Sums, SumSquared) do
              I1 is I+1,
              Sums[I] #= Sums[I1],
              SumSquared[I] #= SumSquared[I1]
        ),
 
        % symmetry breaking
        nth1(1, A, A1),
        1 in A1,
 
 
        %
        % search
        %
        term_variables([Sums,SumSquared], Vars),
 
        % It is much faster if we first label the sets.
        label_sets(A),
        search(Vars,0,smallest,indomain_min,complete,
               [backtrack(Backtracks)]),
 
        writeln(a:A),
        writeln(sums:Sums),
        writeln(sum_squared:SumSquared),
        writeln(backtracks:Backtracks).
 
 
 
%
% labeling the sets
%
label_sets([]).
label_sets([S|Ss]) :-
    % insetdomain(S,_,_,_),
    insetdomain(S,increasing,big_first,in_notin),
    label_sets(Ss).
 
 
%
% Partitions the list of sets S into disjoint sets.
% All elements in the universe Universe must be
% included in exactly one of the sets.
%
partition_set(S, Universe) :-
        all_disjoint(S),
        all_union(S,Universe).
 
 
%
% all sets should have the same cardinality
% (walk through the list and compare two consequtive elements)
%
 
same_cardinality(S) :-
        ( fromto(S,[S1,S2|Rest],[S2|Rest], [_]) do
              #(S1) #= #(S2)
        ).
 
               
 
% another version...
same_cardinality2(S,NumSets) :-
    ( for(I,1,NumSets-1), param(S) do
              listut:nth1(I,S,S1),
              I1 is I+1,
              listut:nth1(I1,S,S2),             
              #(S1) #= #(S2)             
    ).
 
% yet another version
same_cardinality3([]) :- !.
same_cardinality3([_]) :- !. 
same_cardinality3([S1,S2|Rest]) :- #(S1) #= #(S2), same_cardinality([S2|Rest]).