Download
/*******************************************************************************
* OscaR is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 2.1 of the License, or
* (at your option) any later version.
*
* OscaR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License along with OscaR.
* If not, see http://www.gnu.org/licenses/lgpl-3.0.en.html
******************************************************************************/
package oscar.examples.cp.hakank
import oscar.cp.modeling._
import oscar.cp.core._
import scala.io.Source._
import scala.math._
/*
Set partition problem in Oscar.
Problem formulation from
http://www.koalog.com/resources/samples/PartitionProblem.java.html
"""
This is a partition problem.
Given the set S = {1, 2, ..., n},
it consists in finding two sets A and B such that:
A U B = S,
|A| = |B|,
sum(A) = sum(B),
sum_squares(A) = sum_squares(B)
"""
Note: This model uses a binary matrix to represent the sets.
@author Hakan Kjellerstrand hakank@gmail.com
http://www.hakank.org/oscar/
*/
object SetPartition {
def main(args: Array[String]) {
val cp = CPSolver()
//
// data
//
val n = if (args.length > 0) args(0).toInt else 16;
val num_sets = if (args.length > 1) args(1).toInt else 2;
val NRANGE = 0 until n
val SRANGE = 0 until num_sets
println("n: " + n + " num_sets: " + num_sets)
//
// variables
//
// The matrix
val a = Array.fill(num_sets,n)(CPIntVar(0 to 1)(cp))
//
// constraints
//
var numSols = 0
cp.solve subjectTo {
for(i <- SRANGE;
j <- SRANGE if i!=j) {
cp.add(
sum(for{k <- NRANGE} yield a(i)(k)*a(j)(k)) == 0
)
}
// ensure that all integers is in
// (exactly) one partition
cp.add(
sum(
for{i <- SRANGE
j <- NRANGE} yield a(i)(j)
) == n
)
for(i <- SRANGE; j <- SRANGE if i < j) {
// same cardinality
cp.add(
sum(for{k <- NRANGE} yield a(i)(k) )
==
sum(for{k <- NRANGE} yield a(j)(k) )
)
// same sum
cp.add(
sum(for{k <- NRANGE} yield a(i)(k)*k )
==
sum(for{k <- NRANGE} yield a(j)(k)*k)
)
// same sum squared
cp.add(
sum(for{k <- NRANGE} yield a(i)(k)*k*a(i)(k)*k )
==
sum(for{k <- NRANGE} yield a(j)(k)*k*a(j)(k)*k)
)
}
// symmetry breaking for num_sets == 2
if (num_sets == 2) {
cp.add(a(0)(0) == 1)
}
} search {
binaryStatic(a.flatten.toSeq)
} onSolution {
println("\nSolution:")
var sums = 0
var sums_squared = 0
for(i <- SRANGE) {
for(j <- NRANGE if a(i)(j).value == 1) {
print((j+1) + " ")
if (i == 0) {
val v = (j+1)*a(i)(j).value
sums += v
sums_squared += v*v
}
}
println()
}
println("Sums: " + sums + " Sums squared: " + sums_squared)
numSols += 1
}
println(cp.start())
}
}