Download
/*
Steiner triplets in SICStus Prolog.
http://www.probp.com/examples/clpset/steiner.pl
"""
The ternary Steiner problem of order n is to find n(n-1)/6 sets of elements
in {1,2,...,n} such that each set contains three elements and any two
sets have at most one element in common.
For example, the following shows a solution for size n=7:
{1,2,3}, {1,4,5}, {1,6,7}, {2,4,6}, {2,5,7}, {3,4,7}, {3,5,6}
Problem taken from:
C. Gervet: Interval Propagation to Reason about Sets: Definition and
Implementation of a PracticalLanguage,
Constraints, An International Journal, vol.1, pp.191-246, 1997.
"""
Also see:
- http://mathworld.wolfram.com/SteinerTripleSystem.html
- http://en.wikipedia.org/wiki/Steiner_system
Note: This model uses arrays of booleans as an representation of sets.
Compare with the following model with the same principle:
* Comet: http://www.hakank.org/comet/steiner_triplet.co
Model created by Hakan Kjellerstrand, hakank@gmail.com
See also my SICStus Prolog page: http://www.hakank.org/sicstus/
*/
% Licenced under CC-BY-4.0 : http://creativecommons.org/licenses/by/4.0/
:-use_module(library(clpfd)).
:-use_module(library(lists)).
go :-
N = 9,
steiner(N,Steiner),
write(Steiner),nl,
fd_statistics.
steiner(N,Steiner) :-
% number of sets
Nb is (N * (N-1)) // 6,
matrix(Sets,[Nb,N]),
append(Sets,SetsList),
domain(SetsList,0,1),
% cardinality is 3
% ( foreach(S,Sets) do
% sum(S,#=,3)
% ),
% atmost 1 element in common
( foreach(S1,Sets), count(I,1,_),
param(Sets) do
sum(S1,#=,3), % cardinality
( foreach(S2,Sets), count(J,1,_),
param(I,S1) do
I > J ->
union_card(S1,S2,Common),
Common #=< 1
;
true
)
),
% lex_chain(Sets,[op(#=<)]),
labeling([ffc,bisect,down],SetsList),
% convert to set representation
( foreach(SS,Sets),
fromto(Steiner,Out,In,[]) do
boolean_to_set(SS,Res),
Out = [Res|In]
).
%
% number of common elements in two "sets"
%
union_card(S1,S2,CardCommon) :-
( foreach(SS1,S1),
foreach(SS2,S2),
fromto(Sum,Out,In,[]) do
SSSum #= SS1 + SS2,
Reif in 0..1,
SSSum #= 2 #<=> Reif #= 1,
Out = [Reif|In]
),
sum(Sum,#=,CardCommon).
%
% convert a list of boolean to a "set"
%
boolean_to_set(List,Set) :-
( foreach(C,List),
count(I,1,_),
fromto(Set,Out,In,[]) do
C == 1
->
Out = [I|In]
;
Out = In
).
matrix_element(X, I, J, Val) :-
nth1(I, X, Row),
element(J, Row, Val).
% Suggested by Mats Carlsson
matrix(_, []) :- !.
matrix(L, [Dim|Dims]) :-
length(L, Dim),
( foreach(X,L),
param(Dims)
do matrix(X, Dims)
).